
Plant palatability to leaf-cutter ants (Atta laevigata) and litter decomposability in a Neotropical woodland savanna
2010; Wiley; Volume: 36; Issue: 5 Linguagem: Inglês
10.1111/j.1442-9993.2010.02169.x
ISSN1442-9993
AutoresLAURA V. B. SILVA, Heraldo L. Vasconcelos,
Tópico(s)Ecology and Vegetation Dynamics Studies
ResumoAustral EcologyVolume 36, Issue 5 p. 504-510 Plant palatability to leaf-cutter ants (Atta laevigata) and litter decomposability in a Neotropical woodland savanna LAURA V. B. SILVA, LAURA V. B. SILVA Instituto de Biologia, Universidade Federal de Uberlândia (UFU), C.P. 593, 38400-902 Uberlândia, MG, Brazil (Email: [email protected])Search for more papers by this authorHERALDO L. VASCONCELOS, HERALDO L. VASCONCELOS Instituto de Biologia, Universidade Federal de Uberlândia (UFU), C.P. 593, 38400-902 Uberlândia, MG, Brazil (Email: [email protected])Search for more papers by this author LAURA V. B. SILVA, LAURA V. B. SILVA Instituto de Biologia, Universidade Federal de Uberlândia (UFU), C.P. 593, 38400-902 Uberlândia, MG, Brazil (Email: [email protected])Search for more papers by this authorHERALDO L. VASCONCELOS, HERALDO L. VASCONCELOS Instituto de Biologia, Universidade Federal de Uberlândia (UFU), C.P. 593, 38400-902 Uberlândia, MG, Brazil (Email: [email protected])Search for more papers by this author First published: 18 August 2010 https://doi.org/10.1111/j.1442-9993.2010.02169.xCitations: 7Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Although leaf-cutter ants have been recognized as the dominant herbivore in many Neotropical ecosystems, their role in nutrient cycling remains poorly understood. Here we evaluated the relationship between plant palatability to leaf-cutter ants and litter decomposability. Our rationale was that if preference and decomposability are related, and if ant consumption changes the abundance of litter with different quality, then ant herbivory could affect litter decomposition by affecting the quality of litter entering the soil. The study was conducted in a woodland savanna (cerrado denso) area in Minas Gerais, Brazil. We compared the decomposition rate of litter produced by trees whose fresh leaves have different degrees of palatability to the leaf-cutter ant Atta laevigata. Our experiments did not indicate the existence of a significant relationship between leaf palatability to A. laevigata and leaf-litter decomposability. Although the litter mixture composed of highly palatable plant species showed, initially, a faster decay rate than the mixture of poorly palatable species, this difference was no longer visible after about 6 months. Results were consistent regardless of whether litter invertebrates were excluded or not from litter bags. Similarly, experiments comparing the decomposition rate of litter from pairs of related plant species also showed no association between plant palatability and decomposition. Decomposition rate of the more palatable species was faster, slower or similar to that of the less palatable species depending upon the particular pair of species being compared. We suggest that the traits that mostly influence the decomposition rate of litter produced by cerrado trees may not be the same as those that influence plant palatability to leaf-cutter ants. Atta laevigata select leaves of different species based – at least in part – on their nitrogen content, but N content was a poor predictor of the decomposition rates of the species we studied. REFERENCES Bardgett R. D. & Wardle D. A. (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84, 2258– 68. Blanton C. M. & Ewel J. (1985) Leaf-cutting ant herbivory in successional and agricultural tropical ecossystems. Ecology 66, 861– 9. Bradford M. A., Tordoff G. M., Eggers T., Jones T. H. & Newington J. E. (2002) Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos 99, 317– 23. Bryant J. P., Provenza F. D., Pastor J., Reichardt P. B., Clausen T. P. & Du Toit J. T. (1991) Interactions between woody plants and browsing mammals mediated by secondary metabolites. Annu. Rev. Ecol. Syst. 22, 431– 46. Cardoso E., Moreno M. I. C., Bruna E. M. & Vasconcelos H. L. (2009) Mudanças fitofisionômicas no cerrado: 18 anos de sucessão ecológica na Estação Ecológica do Panga, Uberlândia-MG. Caminhos Geografia. 10, 254– 68. Chapin F. S. III, Matson P. A. & Mooney H. A. (2002) Principles of Terrestrial Ecosystem Ecology. Springer Science, New York. Cornelissen J. H. C., Perez-Harguindeguy N., Diaz S. et al. (1999) Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol. 143, 191– 200. Costa A. N. (2007) Padrões De Forrageamento E Biomassa Vegetal Consumida Por Atta Laevigata (Hymenopatera Formicidae) Em Uma Área Do Cerrado Brasileiro. MSc. Thesis.Universidade Federal de Uberlândia, Uberlândia. Costa A. A. & Araújo G. M. (2001) Comparação da vegetação arbórea de cerradão e de cerrado na Reserva do Panga, Uberlândia, Minas Gerais. Acta. Bot. Bras. 15, 63– 72. Costa A. N., Vasconcelos H. L., Vieira-Neto E. H. M. & Bruna E. M. (2008) Do herbivores exert top-down effects in Neotropical savannas? Estimates of biomass consumption by leaf-cutter ants. J. Veg. Sci. 19, 849– 54. Embrapa (1997) Manual De Métodos De Análise Do Solo. Empresa Brasileira De Pesquisa Agropecuária. Centro Nacional de Pesquisas do Solo, Rio de Janeiro. Faeth S. H., Connor E. F. & Simberloff D. (1981) Early leaf abscission: A neglected source of mortality for folivores. Am. Nat. 117, 409– 15. Farji-Brener A. G. & Ghermandi L. (2004) Seedling recruitment in a semi-arid Patagonian steppe: Facilitative effects of refuse dumps of leaf-cutting ants. J. Veg. Sci. 15, 823– 30. Farji-Brener A. G. & Silva J. F. (1995) Leaf-cutting ant nests and soil fertility in a well-drained savanna in western Venezuela. Biotropica 27, 250– 3. Gallardo A. & Merino J. (1993) Leaf decomposition in two Mediterranean ecosystems of Southwest Spain: Influence of substrate quality. Ecology 74, 152– 61. Garibaldi L. G., Semmartin M. & Chaneton E. J. (2007) Grazing-induced changes in plant composition affect litter quality and nutrient cycling in flooding Pampa grasslands. Oecologia 151, 650– 62. Goering H. K. & Van Soest P. J. (1970) Forage Fiber Analysis. Agriculture Research Service, USDA, Washington. Gonzalez G. & Seastedt T. R. (2001) Soil fauna and plant litter decomposition tropical and subalpine forests. Ecology 82, 955– 64. Grime J. P., Cornelissen J. H. C., Thompson K. & Hodgson J. G. (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77, 489– 94. Harmon M. E., Nadelhoffer K. J. & Blair J. M. (1999) Measuring decomposition, nutrient turnover and stores in plant litter. In: Standard Soil Methods for Long-Term Ecological Research (eds G. P. Robertson, D. C. Coleman, C. S. Bledsoe & P. Sollins), pp. 202– 40. Oxford Univ. Press, New York. Hobbs N. T. (1996) Modification of ecosystems by ungulates. J. Wildl. Manag. 60, 695– 713. Howard J. J. (1987) Leafcutting ant diet selection: The role of nutrients, water and secundary chemistry. Ecology 68, 503– 15. Howard J. J. (1990) Infidelity of leafcutting ants to host plants: Resource heterogeneity or defense induction? Oecologia 82, 394– 401. Hubbell S. P. & Wiemer D. F. (1983) Host plant selection by an attine ant. In: Social Insects in the Tropical (ed. P. Jaisson), pp. 133– 54. University of Paris Press, Paris. Hunter M. D. (2001) Insect population dynamics meets ecosystem ecology: Effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77– 84. Koricheva J. (1999) Interpreting phenotypic variation in plant allelochemistry: Problems with the use of concentrations. Oecologia 119, 467– 73. Kurokawa H. & Nakashizuka T. (2008) Leaf herbivory and decomposability in a Malaysian Tropical rainforest. Ecology 89, 2645– 56. Liu P., Huang J., Sun O. J. & Han X. (2010) Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia 162, 771– 80. Lovett G. M. & Ruesink A. E. (1995) Carbon and nitrogen mineralization from decomposing gypsy moth frass. Oecologia 104, 133– 8. Mattson W. J. J. (1980) Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119– 61. Miltner A. & Zech W. (1998) Carbohydrate decomposition in beech litter as influenced by aluminium, iron and manganese oxides. Soil Biol. Biochem. 30, 1– 7. Mundim F. M., Costa A. N. & Vasconcelos H. L. (2009) Leaf nutrient content and host plant selection by leaf-cutter ants, Atta laevigata, in a Neotropical savanna. Entomol. Exp. Appl. 130, 47– 54. Nichols-Orians C. M. (1991a) Environmentally induced differences in plant traits: Consequences for susceptibility to a leaf-cutter ant. Ecology. 72, 1609– 23. Nichols-Orians C. M. (1991b) The effects of light on foliar chemistry, growth and susceptibility of seedlings of a canopy tree to an attine ant. Oecologia. 86, 552– 60. Nierop K. G. J. & Verstraten J. M. (2003) Organic matter formation in sandy subsurface horizons of Dutch coastal dunes in relation to soil acidification. Org. Geochem. 34, 499– 513. Petersen H. & Luxton M. (1982) A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 39, 288– 388. Rao M., Terborgh J. & Nunez P. (2001) Increased herbivory in forest isolates: Implications for plant community structure and composition. Conserv. Biol. 15, 624– 33. Schowalter T. D. (2000) Insect Ecology: An Ecosystem Approach. Academic Press, Burlington, MA. Schowalter T. D., Sabin T. E., Stafford S. G. & Sexton J. M. (1991) Phytophage effects on primary production, nutrient turnover, and litter decomposition of young Douglas-fir in western Oregon. For. Ecol. Manage. 42, 229– 43. Sternberg L. S. L., Pinzon M. C., Moreira M. Z., Moutinho P., Rojas E. I. & Herre E. A. (2007) Plants use macronutrients accumulated in leaf-cutting ant nests. Proc. R. Soc. B. 274, 315– 21. Swift M. J., Heal O. W. & Anderson J. M. (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific, Oxford. Vasconcelos H. L. & Laurance W. F. (2005) Influence of habitat, litter type, and soil invertebrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia. 144, 456– 62. Wall D. H., Bradford M. A., John M. G. S. et al. (2008) Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 14, 1– 17. Wirth R., Herz H., Ryel R., Beyschlag W. & Hölldobler B. (2003) Herbivory of Leaf-Cutting Ants: A Case Study on Atta Colombica in the Tropical Rainforest of Panama. Springer-Verlag, Berlin. Xu X. & Hirata E. (2005) Decomposition patterns of leaf litter of seven common canopy species in a subtropical forest: N and P dynamics. Plant Soil. 273, 279– 89. Citing Literature Volume36, Issue5August 2011Pages 504-510 ReferencesRelatedInformation
Referência(s)