Revisão Revisado por pares

EEG-fMRI INTEGRATION: A CRITICAL REVIEW OF BIOPHYSICAL MODELING AND DATA ANALYSIS APPROACHES

2010; Imperial College Press; Volume: 09; Issue: 04 Linguagem: Inglês

10.1142/s0219635210002512

ISSN

1757-448X

Autores

Maria João Rosa, Jean Daunizeau, Karl Friston,

Tópico(s)

EEG and Brain-Computer Interfaces

Resumo

Journal of Integrative NeuroscienceVol. 09, No. 04, pp. 453-476 (2010) Special Issue on the mesoscale in neuroimaging: creating bridges between the microscopic and system levelsNo AccessEEG-fMRI INTEGRATION: A CRITICAL REVIEW OF BIOPHYSICAL MODELING AND DATA ANALYSIS APPROACHESM. J. ROSA, J. DAUNIZEAU, and K. J. FRISTONM. J. ROSAWellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United Kingdom, J. DAUNIZEAUWellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United KingdomLaboratory for Social and Neural Systems Research, Institute for Empirical Research in Economics, University of Zurich, SwitzerlandCorresponding author., and K. J. FRISTONWellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, United Kingdomhttps://doi.org/10.1142/S0219635210002512Cited by:84 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractThe diverse nature of cerebral activity, as measured using neuroimaging techniques, has been recognised long ago. It seems obvious that using single modality recordings can be limited when it comes to capturing its complex nature. Thus, it has been argued that moving to a multimodal approach will allow neuroscientists to better understand the dynamics and structure of this activity. This means that integrating information from different techniques, such as electroencephalography (EEG) and the blood oxygenated level dependent (BOLD) signal recorded with functional magnetic resonance imaging (fMRI), represents an important methodological challenge. In this work, we review the work that has been done thus far to derive EEG/fMRI integration approaches. This leads us to inspect the conditions under which such an integration approach could work or fail, and to disclose the types of scientific questions one could (and could not) hope to answer with it.Keywords:Neuroimaginginformation fusionfunctional segregationfunctional integrationevent-relatedneurophysiologydata-drivenmodel-basedBayesian analysismodel comparison References Y. Aghakaniet al., Brain 127, 1127 (2004). Crossref, Medline, ISI, Google ScholarS. P. Ahlfors and G. V. Simpson, Neuroimage 1, 323 (2004). Google ScholarP. J. Allenet al., Neuroimage 12, 230 (2000), DOI: 10.1006/nimg.2000.0599. Crossref, Medline, ISI, Google ScholarJ. S. Archer and R. S. Briellmann, Neurology 60, 79 (2003). Google ScholarJ. S. Archeret al., Neuroimage 20, 1915 (2003), DOI: 10.1016/S1053-8119(03)00294-5. Crossref, Medline, ISI, Google ScholarO. J. Arthurs and S. J. Boniface, Clin. Neurophysiol. 114, 1203 (2003), DOI: 10.1016/S1388-2457(03)00080-4. Crossref, Medline, ISI, Google ScholarA. Asmiet al., Epilepsia 44, 1328 (2003). Crossref, Medline, ISI, Google ScholarD. Attwellet al., Trends. Neurosci. 25, 621 (2002), DOI: 10.1016/S0166-2236(02)02264-6. Crossref, Medline, ISI, Google ScholarA. Aubertet al., J. Cereb. Blood. Flow. Metab. 12, 23 (2005). Google ScholarA. Babajani, M. H. Nekooei and H. Soltanian-Zadeh, Brain. Topogr. 18, 101 (2005), DOI: 10.1007/s10548-005-0279-5. Crossref, Medline, ISI, Google ScholarA. Babajani and H. Soltanian-Zadeh, IEEE. Trans. Biomed. Eng. 53, 1794 (2006), DOI: 10.1109/TBME.2006.873748. Crossref, Medline, ISI, Google ScholarA. Babajani-Feremi, H. Soltanian-Zadeh and J. E. Moran, Brain. Topogr. 21, 61 (2008), DOI: 10.1007/s10548-008-0056-3. Crossref, Medline, ISI, Google ScholarA. Babajani-Feremiet al., Proc. SPIE. 72621V, 7262 (2009). Google ScholarF. Babiloniet al., Modeling and Imaging of Bioelectric Activity: Principles and Applications (Kluwer Academic, Plenum Publishers, 2004) pp. 251–280. Crossref, Google ScholarA. Bagshawet al., Hum. Brain. Mapp. 22, 179 (2004), DOI: 10.1002/hbm.20024. Crossref, Medline, ISI, Google ScholarA. Bagshawet al., Neuroimage 24, 1099 (2005), DOI: 10.1016/j.neuroimage.2004.10.010. Crossref, Medline, ISI, Google ScholarA. Bagshawet al., Neuroimage 30(2), 417 (2005), DOI: 10.1016/j.neuroimage.2005.09.033. Crossref, Medline, ISI, Google ScholarS. Bailletet al., Int. J. Bioelectromagn. (2001). Medline, Google ScholarS. Baillet, J. C. Mosher and R. M. Leahy, IEEE. Signal. Process. Mag. 14 (2001), DOI: 10.1109/79.962275. Google ScholarR. Beisteineret al., Eur. J. Neurosci. 9, 1072 (1997), DOI: 10.1111/j.1460-9568.1997.tb01457.x. Crossref, Medline, ISI, Google ScholarC. G. Benaret al., Neuroimage 17, 1182 (2002), DOI: 10.1006/nimg.2002.1164. Crossref, Medline, ISI, Google ScholarC. Bénaret al., Clin. Neurophysiol. 3, 569 (2003). Google ScholarC. Bénaret al., Neuroimage 30(4), 1161 (2006). Crossref, Medline, Google Scholar G. Bonvento , N. Sibson and L. Pellerin , Trends. Neurosci. 25 , 359 . Crossref, Medline, ISI, Google ScholarS. Booret al., Epilepsia 44, 688 (2003), DOI: 10.1046/j.1528-1157.2003.27802.x. Crossref, Medline, ISI, Google ScholarR. B. Buxton, E. C. Wong and L. R. Frank, Magn. Reson. Med. Sci. 39, 855 (1998). Crossref, ISI, Google ScholarG. Carmignoto and M. Gómez-Gonzalo, Brain. Res. Rev. 63(2), 138 (2010), DOI: 10.1016/j.brainresrev.2009.11.007. Crossref, Medline, ISI, Google ScholarJ. Y. Chattonet al., Proc. Natl. Acad. Sci. USA. 100, 12456 (2003), DOI: 10.1073/pnas.2132096100. Crossref, Medline, ISI, Google ScholarA. M. Dale and A. M. Liu, Neuron 26, 55 (2000), DOI: 10.1016/S0896-6273(00)81138-1. Crossref, Medline, ISI, Google ScholarA. M. Dale and E. Halgren, Curr. Opin. Neurobiol. 11, 202 (2001), DOI: 10.1016/S0959-4388(00)00197-5. Crossref, Medline, ISI, Google ScholarJ. Daunizeauet al., IEEE. Trans. Signal. Process. 53, 3461 (2005), DOI: 10.1109/TSP.2005.853220. Crossref, ISI, Google ScholarJ. Daunizeauet al., Neuroimage 3, 69 (2007). Medline, ISI, Google ScholarJ. Daunizeau, A. Vaudano and L. Lemieux, Neuroimage 49, 656 (2009), DOI: 10.1016/j.neuroimage.2009.06.048. Crossref, Medline, ISI, Google Scholar J. Daunizeau , H. Laufs and K. J. Friston , EEG-fMRI-Physiology , Technique and Applications , ed. L. Mulert ( Springer , 2010 ) . Google ScholarO. David and K. J. Friston, Neuroimage 20, 1743 (2003), DOI: 10.1016/j.neuroimage.2003.07.015. Crossref, Medline, ISI, Google Scholar T. Deneux et al. , EEG-fMRI fusion of non-triggered data using Kalman filtering , IEEE Int. Symp. Biomed. Imaging ( 2006 ) . Google ScholarT. Deneux and O. Faugeras, Neural. Comput. 22, 906 (2010), DOI: 10.1162/neco.2009.05-08-793. Crossref, Medline, ISI, Google ScholarL. Dinget al., J. Clin. Neurophysiol. 24, 130 (2007). Crossref, Medline, ISI, Google ScholarL. Dinget al., J. Clin. Neurophysiol. 24(2), 130 (2007). Crossref, Medline, ISI, Google ScholarT. Eicheleet al., Int. J. Psychophysiol. 67, 222 (2008), DOI: 10.1016/j.ijpsycho.2007.04.010. Crossref, Medline, ISI, Google ScholarT. Eichele, V. D. Calhoun and S. Debener, Int. J. Psychophysiol. 73, 53 (2009), DOI: 10.1016/j.ijpsycho.2008.12.018. Crossref, Medline, ISI, Google ScholarA. Ekstrom, Brain. Res. Rev. 62, 233 (2010), DOI: 10.1016/j.brainresrev.2009.12.004. Crossref, Medline, ISI, Google Scholar C. Estrada and J. De Felipe , Cereb. Cortex. 8 , 193 . Crossref, Medline, ISI, Google ScholarM. L. Ellingsonet al., Neuroimage 22, 1534 (2004), DOI: 10.1016/j.neuroimage.2004.03.033. Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Neuroimage 12, 466 (1995), DOI: 10.1006/nimg.2000.0630. Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Neuroimage 4, 97 (1996), DOI: 10.1006/nimg.1996.0033. Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Neuroimage 12, 466 (2000), DOI: 10.1006/nimg.2000.0630. Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Neuroimage 12, 466 (2003), DOI: 10.1006/nimg.2000.0630. Crossref, Medline, ISI, Google ScholarK. J. Friston, Annu. Rev. Psychol. 56, 57 (2005), DOI: 10.1146/annurev.psych.56.091103.070311. Crossref, Medline, ISI, Google ScholarK. J. Friston, Philos. Trans. R Soc. Lond. B Biol. Sci. 360, 815 (2005). Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Neuroimage (2008). Google ScholarG. Garreffaet al., Magn. Reson. Imag. 21, 1175 (2003), DOI: 10.1016/j.mri.2003.08.019. Crossref, Medline, ISI, Google ScholarA. Gibson, J. Hebden and S. Arridge, Phys. Med. Biol. 50, R1 (2005), DOI: 10.1088/0031-9155/50/4/R01. Crossref, Medline, Google ScholarR. I. Goldmanet al., Clin. Neurophysiol. 111(11), 1974 (2000), DOI: 10.1016/S1388-2457(00)00456-9. Crossref, Medline, ISI, Google ScholarR. Goldmanet al., Neuroreport 18(13), 2487 (2002). Google ScholarJ. B. Goense and N. K. Logothetis, Curr. Biol. 18, 631 (2008), DOI: 10.1016/j.cub.2008.03.054. Crossref, Medline, ISI, Google ScholarA. S. L. Gonzaleset al., Int. J. Bioelectromag. 3, (2001). Google ScholarS. L. Gonzalez Andinoet al., Hum. Brain. Mapp. 14, 81 (2001), DOI: 10.1002/hbm.1043. Crossref, Medline, ISI, Google ScholarJ. Gotmanet al., Proc. Natl. Acad. Sci. USA. 102, 15236 (2005), DOI: 10.1073/pnas.0504935102. Crossref, Medline, ISI, Google ScholarC. Grovaet al., Neuroimage 39, 755 (2008), DOI: 10.1016/j.neuroimage.2007.08.020. Crossref, Medline, ISI, Google Scholar Y. O. Halchenko et al. , Advanced Image Processing in Magnetic Resonance Imaging , eds. L. Landini , M. F. Santarelli and V. Posatino ( Dekker , 2005 ) . Google ScholarM. Hallett, Int. Congr. Ser. 1226, 17 (2002), DOI: 10.1016/S0531-5131(01)00493-9. Crossref, Google ScholarK. Hamandiet al., J. Clin. Neurophysiol. 21, 241 (2004). Crossref, Medline, ISI, Google ScholarR. N. Hensonet al., Hum. Brain. Mapp. (2010). Google ScholarS. G. Horovitzet al., Neuroimage 22, 1587 (2004), DOI: 10.1016/j.neuroimage.2004.04.018. Crossref, Medline, ISI, Google ScholarB. Horwitz and D. Poeppel, Hum. Brain. Mapp. 17, 1 (2002), DOI: 10.1002/hbm.10057. Crossref, Medline, ISI, Google ScholarC. Iadecola, Nat. Rev. Neurosci. 5, 347 (2004), DOI: 10.1038/nrn1387. Crossref, Medline, ISI, Google ScholarC. H. Im and S. Y. Lee, Phys. Med. Biol. 51, 6005 (2006), DOI: 10.1088/0031-9155/51/23/004. Crossref, Medline, ISI, Google ScholarM. Joneset al., Neuroimage 22, 956 (2004), DOI: 10.1016/j.neuroimage.2004.02.007. Crossref, Medline, ISI, Google ScholarO. Kawakamiet al., Hum. Brain. Mapp. 16, 104 (2002), DOI: 10.1002/hbm.10033. Crossref, Medline, ISI, Google ScholarI. Kidaet al., J. Cereb. Blood. Metab. 21, 585 (2001). Crossref, Medline, ISI, Google ScholarS. J. Kiebelet al., Neuroimage 22, 053 (2004). Google ScholarS. J. Kiebelet al., Neuroimage 36, 332 (2007), DOI: 10.1016/j.neuroimage.2007.02.046. Crossref, Medline, ISI, Google ScholarS. J. Kiebelet al., Neuroimage (2007). Google ScholarJ. M. Kilneret al., Neuroimage 28, 280 (2005), DOI: 10.1016/j.neuroimage.2005.06.008. Crossref, Medline, ISI, Google Scholar R. C. Koehler , R. J. Roman and D. R. Harder , Trends. Neurosci. 32 , 160 . Crossref, Medline, ISI, Google ScholarA. Korjenovaet al., Hum. Brain. Mapp. 10, 10 (1999). Medline, ISI, Google ScholarK. Krakowet al., Hum. Brain. Mapp. 10, 10 (2000). Crossref, Medline, ISI, Google ScholarK. Krakowet al., Neuroimage 13, 502 (2001), DOI: 10.1006/nimg.2000.0708. Crossref, Medline, ISI, Google ScholarF. Kruggelet al., Magn. Reson. Med. 44, 277 (2000). Crossref, Medline, ISI, Google ScholarJ. P. Lachauxet al., Hum. Brain. Mapp. 28, 1368 (2007), DOI: 10.1002/hbm.20352. Crossref, Medline, ISI, Google ScholarH. Laufset al., Proc. Natl. Acad. Sci. USA. 100, 11053 (2003), DOI: 10.1073/pnas.1831638100. Crossref, Medline, ISI, Google ScholarH. Laufset al., Neuroimage 4(19), 1463 (2003). Google ScholarH. Laufset al., Neuroimage 31, 1408 (2006), DOI: 10.1016/j.neuroimage.2006.02.002. Crossref, Medline, ISI, Google ScholarH. Laufset al., Neuroimage (2007). Google ScholarH. Laufs, Hum. Brain. Mapp. 29, 762 (2008), DOI: 10.1002/hbm.20600. Crossref, Medline, ISI, Google ScholarM. Lauritzen, Nat. Rev. Neurosci. 6, 77 (2005), DOI: 10.1038/nrn1589. Crossref, Medline, ISI, Google ScholarF. Lazeyraset al., J. Magn. Reson. Imaging. 12, 177 (2000). Crossref, Medline, ISI, Google ScholarL. Lemieuxet al., Neuroimage 14(3), 780 (2001), DOI: 10.1006/nimg.2001.0853. Crossref, Medline, ISI, Google ScholarJ. H. Leeet al., Nature 465(7299), 788 (2010), DOI: 10.1038/nature09108. Crossref, Medline, ISI, Google ScholarU. Lindaueret al., J. Cereb. Blood. Flow. Metab. 30(4), 757 (2010), DOI: 10.1038/jcbfm.2009.259. Crossref, Medline, ISI, Google ScholarF. Linet al., Neuroimage 23, 582 (2004), DOI: 10.1016/j.neuroimage.2004.04.027. Crossref, Medline, ISI, Google ScholarA. K. Liu, J. W. Belliveau and A. M. Dale, Proc. Natl. Acad. Sci. USA. 95(15), 8945 (1998), DOI: 10.1073/pnas.95.15.8945. Crossref, Medline, ISI, Google ScholarZ. Liuet al., IEEE. Eng. Med. Biol. Mag. 25, 46 (2006). Medline, ISI, Google ScholarN. K. Logothetiset al., Nature 412, 150 (2001), DOI: 10.1038/35084005. Crossref, Medline, ISI, Google ScholarN. K. Logothetis and B. A. Wandell, Annu. Rev. Physiol. 66, 8945 (2004), DOI: 10.1146/annurev.physiol.66.082602.092845. Google ScholarH. Luet al., J. Cereb. Blood. Flow. Metab. 24, 764 (2004). Crossref, Medline, ISI, Google ScholarS. J. Luck, Hum. Brain. Mapp. 8, 115 (2000). Crossref, Medline, ISI, Google ScholarA. C. Marreiroset al., Neuroimage 44, 701 (2008), DOI: 10.1016/j.neuroimage.2008.10.008. Crossref, Medline, ISI, Google ScholarJ. Martindaleet al., J. Cereb. Blood. Flow. Metab. 23, 546 (2003). Crossref, Medline, ISI, Google ScholarC. Mathiesenet al., J. Physiol. 512, 555 (1998), DOI: 10.1111/j.1469-7793.1998.555be.x. Crossref, Medline, ISI, Google ScholarJ. Mattoutet al., Neuroimage 30, 753 (2006), DOI: 10.1016/j.neuroimage.2005.10.037. Crossref, Medline, ISI, Google ScholarG. R. Mangunet al., Hum. Brain. Mapp. 6, 383 (1998). Crossref, Medline, ISI, Google ScholarA. C. Marreiroset al., Neuroimage 44, 701 (2009), DOI: 10.1016/j.neuroimage.2008.10.008. Crossref, Medline, ISI, Google ScholarE. Martínez-Monteset al., Neuroimage 22, 1023 (2004). Crossref, Medline, Google ScholarM. Moosmannet al., Neuroimage 20(1), 145 (2003), DOI: 10.1016/S1053-8119(03)00344-6. Crossref, Medline, ISI, Google ScholarM. Moosmannet al., Int. J. Psychophysiol. (2008). Google ScholarR. Mukamelet al., Science 5, 951 (2005). ISI, Google ScholarC. Mulertet al., Neuroimage 22, 83 (2004), DOI: 10.1016/j.neuroimage.2003.10.051. Crossref, Medline, ISI, Google Scholar C. Mulert and L. Lemieux , Physiological Basis, Technique and Applications ( Springer , 2010 ) . Google ScholarJ. C. de Muncket al., Neuroimage 47, 69 (2009), DOI: 10.1016/j.neuroimage.2009.04.029. Crossref, Medline, ISI, Google ScholarS. D. Muthukumaraswamy and K. D. Singh, Hum. Brain. Mapp. (2009). Google ScholarW. Nakamuraet al., IEEE. Trans. Biomed. Eng. 53, 1294 (2006), DOI: 10.1109/TBME.2006.875718. Crossref, Medline, ISI, Google ScholarJ. Niessinget al., Science 309, 948 (2005), DOI: 10.1126/science.1110948. Crossref, Medline, ISI, Google Scholar P. L. Nunez , Electric Fields of the Brain ( New York Press , Oxford , 1981 ) . Google ScholarP. L. Nunez and R. B. Silberstein, Brain. Topogr. 13, 79 (2000), DOI: 10.1023/A:1026683200895. Crossref, Medline, ISI, Google ScholarA. B. Patelet al., J. Cereb. Blood. Flow. Metab. 24, 972 (2004). Crossref, Medline, ISI, Google ScholarA. B. Patelet al., Proc. Natl. Acad. Sci. USA. 102, 5588 (2005), DOI: 10.1073/pnas.0501703102. Crossref, Medline, ISI, Google ScholarA. Pavone and E. Niedermeyer, Clin. Electroencephalogr. 31, 153 (2000). Crossref, Medline, Google Scholar P. J. Pflieger and R. E. Greenblatt , Int. J. Bioelectromag. . Medline, Google ScholarA. Puceet al., Hum. Brain. Mapp. 5, 298 (1997). Crossref, Medline, ISI, Google ScholarA. Rauch, G. Rainer and N. K. Logothetis, Proc. Natl. Acad. Sci. USA. 105(18), 6759 (2008), DOI: 10.1073/pnas.0800312105. Crossref, Medline, ISI, Google ScholarJ. Rieraet al., Hum. Brain. Mapp. 27, 896 (2006), DOI: 10.1002/hbm.20230. Crossref, Medline, ISI, Google ScholarJ. Rieraet al., Hum. Brain. Mapp. 28, 335 (2007), DOI: 10.1002/hbm.20278. Crossref, Medline, ISI, Google ScholarJ. Riera and A. Sumiyoshi, Curr. Op. Neurobiol. 23, 374 (2010). Crossref, Google Scholar P. Ritter and A. Villringer , Neurosci. Biobehav. Rev. 30 , 823 . Crossref, Medline, ISI, Google ScholarM. J. Rosaet al., Neuroimage 49, 1496 (2010), DOI: 10.1016/j.neuroimage.2009.09.011. Crossref, Medline, ISI, Google ScholarB. R. Rosenet al., Proc. Natl. Acad. Sci. USA. 895, 773 (1998). Google ScholarU. Schriddeet al., Cereb. Cortex. 18, 1814 (2008), DOI: 10.1093/cercor/bhm208. Crossref, Medline, ISI, Google ScholarH. Shiraishiet al., Epilepsia 46, 1264 (2005), DOI: 10.1111/j.1528-1167.2005.65504.x. Crossref, Medline, ISI, Google ScholarR. G. Shulman and F. Hyder, Proc. Natl. Acad. Sci. USA. 98, 6417 (2001), DOI: 10.1073/pnas.101129298. Crossref, Medline, ISI, Google ScholarA. Shmuelet al., Nat. Neurosci. 9, 569 (2006), DOI: 10.1038/nn1675. Crossref, Medline, ISI, Google ScholarY. B. Sirotin and A. Das, Nature 457, 475 (2009), DOI: 10.1038/nature07664. Crossref, Medline, ISI, Google ScholarK. Stephanet al., Curr. Opin. Neurobiol. 14, 629 (2004), DOI: 10.1016/j.conb.2004.08.006. Crossref, Medline, ISI, Google ScholarC. Stippichet al., Neuroreport 9, 1953 (1998), DOI: 10.1097/00001756-199806220-00007. Crossref, Medline, ISI, Google ScholarS. Theeset al., Neuroimage 18, 707 (2003), DOI: 10.1016/S1053-8119(02)00054-X. Crossref, Medline, ISI, Google ScholarK. Thomsen, N. Offenhauser and M. Lauritzen, J. Physiol. 560, 181 (2004), DOI: 10.1113/jphysiol.2004.068072. Crossref, Medline, ISI, Google ScholarR. Scheeringaet al., Neuroimage 44, 1224 (2009), DOI: 10.1016/j.neuroimage.2008.08.041. Crossref, Medline, ISI, Google ScholarR. C. Sotero and N. J. Trujillo-Barreto, Neuroimage 35(1), 149 (2007), DOI: 10.1016/j.neuroimage.2006.10.027. Crossref, Medline, ISI, Google ScholarR. C. Sotero and N. J. Trujillo-Barreto, Neuroimage 39, 290 (2008), DOI: 10.1016/j.neuroimage.2007.08.001. Crossref, Medline, ISI, Google ScholarR. C. Soteroet al., J. Comput. Neurosci. 26, 251 (2009), DOI: 10.1007/s10827-008-0109-3. Crossref, Medline, ISI, Google ScholarR. Thorntonet al., J. Neurol. Neurosurg. Psychiatry. (2010). Google ScholarN. J. Trujilloet al., Int. J. Bioelectromag. 3, (2004). Google ScholarR. Turner and T. Jones, Br. Med. Bull. 65, 3 (2003), DOI: 10.1093/bmb/65.1.3. Crossref, Medline, ISI, Google ScholarM. Ureshiet al., Neurosci. Res. 48, 147 (2004), DOI: 10.1016/j.neures.2003.10.014. Crossref, Medline, ISI, Google ScholarP. A. Valdes-Sosaet al., Hum. Brain. Mapp. 30, 2701 (2009), DOI: 10.1002/hbm.20704. Crossref, Medline, ISI, Google ScholarA. Viswanathan and R. D. Freeman, Nat. Neurosci. 10, 1308 (2007), DOI: 10.1038/nn1977. Crossref, Medline, ISI, Google ScholarM. Wagneret al., Int. J. Bioelectromag. (2001). Medline, Google ScholarH. Wang, I. M. Hitron and C. Iadecola, Cereb. Cortex. 15, 1250 (2005), DOI: 10.1093/cercor/bhi008. Crossref, Medline, ISI, Google ScholarX. Wanget al., Nat. Neurosci. 9, 816 (2006), DOI: 10.1038/nn1703. Crossref, Medline, ISI, Google Scholar M. Zonta et al. , Nat. Neurosci. 6 , 43 . Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 84A revisit of the amygdala theory of autism: Twenty years afterShuo Wang and Xin Li1 May 2023 | Neuropsychologia, Vol. 183Minimizing the distortions in electrophysiological source imaging of cortical oscillatory activity via Spectral Structured Sparse Bayesian LearningDeirel Paz-Linares, Eduardo Gonzalez-Moreira, Ariosky Areces-Gonzalez, Ying Wang and Min Li et al.15 March 2023 | Frontiers in Neuroscience, Vol. 17A naturalized view of literacy education: what the neuro- and life sciences may offer language and literacy researchGeorge G. Hruby and Ayan Mitra1 Jan 2023Mapping Brain Networks Using Multimodal DataGuofa Shou, Han Yuan and Lei Ding3 February 2023Source localization and functional network analysis in emotion cognitive reappraisal with EEG-fMRI integrationWenjie Li, Wei Zhang, Zhongyi Jiang, Tiantong Zhou and Shoukun Xu et al.12 August 2022 | Frontiers in Human Neuroscience, Vol. 16Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical FeaturesBoram Jeong, Jiyoon Lee, Heejung Kim, Seungyeon Gwak and Yu Kyeong Kim et al.30 June 2022 | Frontiers in Neuroscience, Vol. 16Modeling the Hemodynamic Response Function Using EEG-fMRI Data During Eyes-Open Resting-State Conditions and Motor Task ExecutionProkopis C. Prokopiou, Alba Xifra-Porxas, Michalis Kassinopoulos, Marie-Hélène Boudrias and Georgios D. Mitsis30 April 2022 | Brain Topography, Vol. 35, No. 3Mapping Brain Networks Using Multimodal DataGuofa Shou, Han Yuan and Lei Ding9 March 2022The Added Value of EEG-fMRI in Imaging NeuroscienceRainer Goebel and Fabrizio Esposito1 January 2023EEG–fMRI Information Fusion: Biophysics and Data AnalysisNelson J. Trujillo-Barreto, Jean Daunizeau, Helmut Laufs and Karl J. Friston1 January 2023Integrating EEG–fMRI Through Brain SimulationMichael Schirner and Petra Ritter1 January 2023Inferring Macroscale Brain Dynamics via Fusion of Simultaneous EEG-fMRIMarios G. Philiastides, Tao Tu and Paul Sajda8 Jul 2021 | Annual Review of Neuroscience, Vol. 44, No. 1When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRICatriona L. Scrivener29 June 2021 | Frontiers in Neuroscience, Vol. 15THE EXPLORATORY DIMENSION OF FMRI EXPERIMENTSA. NICOLÁS VENTURELLI1 March 2021 | Manuscrito, Vol. 44, No. 1Breath-hold task induces temporal heterogeneity in electroencephalographic regional field power in healthy subjectsMaria Sole Morelli, Nicola Vanello, Alejandro Luis Callara, Valentina Hartwig and Michelangelo Maestri et al.1 Feb 2021 | Journal of Applied Physiology, Vol. 130, No. 2The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future PerspectivesJennifer A. Ross and Elisabeth J. Van Bockstaele27 January 2021 | Frontiers in Psychiatry, Vol. 11Combining Noninvasive Electromagnetic and Hemodynamic Measures of Human Brain ActivityFa-Hsuan Lin, Thomas Witzel, Matti S. Hämäläinen and Aapo Nummenmaa6 August 2020Simultaneous EEG-fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integrationGiulia Lioi, Claire Cury, Lorraine Perronnet, Marsel Mano and Elise Bannier et al.10 June 2020 | Scientific Data, Vol. 7, No. 1A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and TimeRadoslaw M. Cichy and Aude Oliva1 Sep 2020 | Neuron, Vol. 107, No. 5Concurrent electrophysiological and hemodynamic measurements of evoked neural oscillations in human visual cortex using sparsely interleaved fast fMRI and EEGHsin-Ju Lee, Shu-Yu Huang, Wen-Jui Kuo, Simon J. Graham and Ying-Hua Chu et al.1 Aug 2020 | NeuroImage, Vol. 217Prompting future events: Effects of temporal cueing and time on task on brain preparation to actionMarika Berchicci, Valentina Sulpizio, Giovanni Mento, Giuliana Lucci and Nicole Civale et al.1 Jun 2020 | Brain and Cognition, Vol. 141Bayesian fusion and multimodal DCM for EEG and fMRIHuilin Wei, Amirhossein Jafarian, Peter Zeidman, Vladimir Litvak and Adeel Razi et al.1 May 2020 | NeuroImage, Vol. 211Modeling functional resting-state brain networks through neural message passing on the human connectomeJulio A. Peraza-Goicolea, Eduardo Martínez-Montes, Eduardo Aubert, Pedro A. Valdés-Hernández and Roberto Mulet1 Mar 2020 | Neural Networks, Vol. 123Neuroentrepreneurship a new paradigm in the management scienceJaroslaw Korpysa1 Jan 2020 | Procedia Computer Science, Vol. 176Method for spatial overlap estimation of electroencephalography and functional magnetic resonance imaging responsesN. Heugel, E. Liebenthal and S.A. Beardsley1 Dec 2019 | Journal of Neuroscience Methods, Vol. 328To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inferenceMáté Aller, Uta Noppeney and Christopher Petkov2 April 2019 | PLOS Biology, Vol. 17, No. 4Reliability and Generalizability of Similarity-Based Fusion of MEG and fMRI Data in Human Ventral and Dorsal Visual StreamsYalda Mohsenzadeh, Caitlin Mullin, Benjamin Lahner, Radoslaw Cichy and Aude Oliva10 February 2019 | Vision, Vol. 3, No. 1Artifacts in EEG of simultaneous EEG-fMRI: pulse artifact remainders in the gradient artifact template are a source of artifact residuals after average artifact subtractionDavid Steyrl and Gernot R Müller-Putz12 December 2018 | Journal of Neural Engineering, Vol. 16, No. 1Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric DiseasesEmine Elif Tulay, Barış Metin, Nevzat Tarhan and Mehmet Kemal Arıkan20 June 2018 | Clinical EEG and Neuroscience, Vol. 50, No. 1Neuroscience Information Toolbox: An Open Source Toolbox for EEG–fMRI Multimodal Fusion AnalysisLi Dong, Cheng Luo, Xiaobo Liu, Sisi Jiang and Fali Li et al.24 August 2018 | Frontiers in Neuroinformatics, Vol. 12Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopySabrina Pitzalis, Francesca Strappini, Alessandro Bultrini and Francesco Di Russo13 March 2018 | Human Brain Mapping, Vol. 39, No. 7Multimodal approaches to functional connectivity in autism spectrum disorders: An integrative perspectiveLisa E. Mash, Maya A. Reiter, Annika C. Linke, Jeanne Townsend and Ralph‐Axel Müller27 December 2017 | Developmental Neurobiology, Vol. 78, No. 5EEG-Informed fMRI: A Review of Data Analysis MethodsRodolfo Abreu, Alberto Leal and Patrícia Figueiredo6 February 2018 | Frontiers in Human Neuroscience, Vol. 12Optimizing Within-Subject Experimental Designs for jICA of Multi-Channel ERP and fMRIJain Mangalathu-Arumana, Einat Liebenthal and Scott A. Beardsley23 January 2018 | Frontiers in Neuroscience, Vol. 12Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRIGalina V. Portnova, Alina Tetereva, Vladislav Balaev, Mikhail Atanov and Lyudmila Skiteva et al.9 January 2018 | Frontiers in Human Neuroscience, Vol. 11EEG Source Imaging and Multimodal NeuroimagingYingchun Zhang17 August 2018A New fMRI Informed Mixed-Norm Constrained Algorithm for EEG Source LocalizationHailing Wang, Xu Lei, Zhichao Zhan, Li Yao and Xia Wu1 Jan 2018 | IEEE Access, Vol. 6Concurrent measurement of cerebral hemodynamics and electroencephalography during transcranial direct current stimulationMartina Giovannella, David Ibañez, Clara Gregori-Pla and Michal Kacprzak1 Jan 2018 | Neurophotonics, Vol. 5, No. 01Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivityJonathan Wirsich, Ben Ridley, Pierre Besson, Viktor Jirsa and Christian Bénar et al.1 Nov 2017 | NeuroImage, Vol. 161A Realistic Framework for Investigating Decision Making in the Brain With High Spatiotemporal Resolution Using Simultaneous EEG/fMRI and Joint ICASreenath P. Kyathanahally, Ana Franco-Watkins, Xiaoxia Zhang, Vince D. Calhoun and Gopikrishna Deshpande1 May 2017 | IEEE Journal of Biomedical and Health Informatics, Vol. 21, No. 3Resolving the neural dynamics of visual and auditory scene processing in the human brain: a methodological approachRadoslaw Martin Cichy and Santani Teng19 February 2017 | Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 372, No. 1714Multi-modal EEG and fMRI Source Estimation Using Sparse ConstraintsSaman Noorzadeh, Pierre Maurel, Thomas Oberlin, Rémi Gribonval and Christian Barillot4 September 2017Connectomics in Patients with Temporal Lobe EpilepsyCristian Donos, Andrei Barborica, Ioana Mindruta, Mihai Maliia and Irina Popa et al.2 December 2017The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurementsHana Uhlirova, Kıvılcım Kılıç, Peifang Tian, Sava Sakadžić and Louis Gagnon et al.5 October 2016 | Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 371, No. 1705Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI StudyQingbao Yu, Lei Wu, David A. Bridwell, Erik B. Erhardt and Yuhui Du et al.28 September 2016 | Frontiers in Human Neuroscience, Vol. 10A Cautionary Contribution to the Philosophy of Explanation in the Cognitive NeurosciencesA. Nicolás Venturelli22 February 2016 | Minds and Machines, Vol. 26, No. 3Similarity-Based Fusion of MEG and fMRI Reveals Spatio-Temporal Dynamics in Human Cortex During Visual Object RecognitionRadoslaw Martin Cichy, Dimitrios Pantazis and Aude Oliva27 May 2016 | Cerebral Cortex, Vol. 26, No. 8Carbon-wire loop based artifact correction outperforms post-processing EEG/fMRI corrections—A validation of a real-time simultaneous EEG/fMRI correction methodJohan N. van der Meer, André Pampel, Eus J.W. Van Someren, Jennifer R. Ramautar and Ysbrand D. van der Werf et al.1 Jan 2016 | NeuroImage, Vol. 125EEG Source Imaging Guided by Spatiotemporal Specific fMRI: Toward an Understanding of Dynamic Cognitive ProcessesThinh Nguyen, Thomas Potter, Trac Nguyen, Christof Karmonik and Robert Grossman et al.1 Jan 2016 | Neural Plasticity, Vol. 2016Analysis and asynchronous detection of gradually unfolding errors during monitoring tasksJason Omedes, Iñaki Iturrate, Javier Minguez and Luis Montesano20 July 2015 | Journal of Neural Engineering, Vol. 12, No. 5Tensor Analysis and Fusion of Multimodal Brain ImagesEsin Karahan, Pedro A. Rojas-Lopez, Maria L. Bringas-Vega, Pedro A. Valdes-Hernandez and Pedro A. Valdes-Sosa1 Sep 2015 | Proceedings of the IEEE, Vol. 103, No. 9Dynamic causal modelling of brain–behaviour relationshipsL. Rigoux and J. Daunizeau1 Aug 2015 | NeuroImage, Vol. 117Characterizing nonlinear relationships in functional imaging data using eigenspace maximal information canonical correlation analysis (emiCCA)Li Dong, Yangsong Zhang, Rui Zhang, Xingxing Zhang and Diankun Gong et al.1 Apr 2015 | NeuroImage, Vol. 109Characterisation and Reduction of the EEG Artefact Caused by the Helium Cooling Pump in the MR Environment: Validation in Epilepsy Patient DataSven Rothlübbers, Vânia Relvas, Alberto Leal, Teresa Murta and Louis Lemieux et al.26 October 2014 | Brain Topography, Vol. 28, No. 2Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG–fMRI dataHyun-Chul Kim, Seung-Schik Yoo and Jong-Hwan Lee1 Jan 2015 | NeuroImage, Vol. 104EEG–fMRI integration for the study of human brain functionJoão Jorge, Wietske van der Zwaag and Patrícia Figueiredo1 Nov 2014 | NeuroImage, Vol. 102Fusing concurrent EEG–fMRI with dynamic causal modeling: Application to effective connectivity during face perceptionVinh T. Nguyen, Michael Breakspear and Ross Cunnington1 Nov 2014 | NeuroImage, Vol. 102An EEG Finger-Print of fMRI deep regional activationYehudit Meir-Hasson, Sivan Kinreich, Ilana Podlipsky, Talma Hendler and Nathan Intrator1 Nov 2014 | NeuroImage, Vol. 102Simultaneous EEG-fMRI: Trial level spatio-temporal fusion for hierarchically reliable information discoveryLi Dong, Diankun Gong, Pedro A. Valdes-Sosa, Yang Xia and Cheng Luo et al.1 Oct 2014 | NeuroImage, Vol. 99Single-trial EEG-informed fMRI reveals spatial dependency of BOLD signal on early and late IC-ERP amplitudes during face recognitionJonathan Wirsich, Christian Bénar, Jean-Philippe Ranjeva, Médéric Descoins and Elisabeth Soulier et al.1 Oct 2014 | NeuroImage, Vol. 100Brain Network Dysfunction in Late-Life DepressionReza Tadayonnejad and Olusola Ajilore30 December 2013 | Journal of Geriatric Psychiatry and Neurology, Vol. 27, No. 1The feedback-related negativity (FRN) revisited: New insights into the localization, meaning and network organizationTobias U. Hauser, Reto Iannaccone, Philipp Stämpfli, Renate Drechsler and Daniel Brandeis et al.1 Jan 2014 | NeuroImage, Vol. 84Computer-Based Assessment of Alzheimer's Disease Employing fMRI and/or EEG: A Comprehensive ReviewEvanthia E. Tripoliti, Michalis Zervakis and Dimitrios I. Fotiadis17 May 2014Effects of Spatial Pattern Scale of Brain Activity on the Sensitivity of DOT, fMRI, EEG and MEGKatherine L. Perdue, Solomon Gilbert Diamond and Satoru Hayasaka23 December 2013 | PLoS ONE, Vol. 8, No. 12Application of Partial Directed Coherence to the Analysis of Resting-State EEG-fMRI DataClaudinei E. Biazoli, Marcio Sturzbecher, Thomas P. White, Heloisa Helena dos Santos Onias and Katia Cristine Andrade et al.1 Dec 2013 | Brain Connectivity, Vol. 3, No. 6Adding dynamics to the Human Connectome Project with MEGL.J. Larson-Prior, R. Oostenveld, S. Della Penna, G. Michalareas and F. Prior et al.1 Oct 2013 | NeuroImage, Vol. 80Dynamic cortical activity during the perception of three-dimensional object shape from two-dimensional random-dot motionSunao Iwaki, Giorgio Bonmassar, and John W. Belliveau26 September 2013 | Journal of Integrative Neuroscience, Vol. 12, No. 03fMRI measurement of the integrative effects of visual and chemical senses stimuli in humansMitsuo Tonoike, Tatsuya Yoshida, Hiroyuki Sakuma, and Li-Qun Wang26 September 2013 | Journal of Integrative Neuroscience, Vol. 12, No. 03fMRI hemodynamics accurately reflects neuronal timing in the human brain measured by MEGFa-Hsuan Lin, Thomas Witzel, Tommi Raij, Jyrki Ahveninen and Kevin Wen-Kai Tsai et al.1 Sep 2013 | NeuroImage, Vol. 78Integration of Multivariate Data Streams With Bandpower SignalsSven Dahne, Felix Biessmann, Frank C. Meinecke, Jan Mehnert and Siamac Fazli et al.1 Aug 2013 | IEEE Transactions on Multimedia, Vol. 15, No. 5Introduction7 Mar 2013Methodology of combined EEG and fMRIHelmut Laufs and Karsten Krakow7 Mar 2013Neurocomputational account of how the human brain decides when to have a breakFlorent Meyniel, Claire Sergent, Lionel Rigoux, Jean Daunizeau and Mathias Pessiglione22 January 2013 | Proceedings of the National Academy of Sciences, Vol. 110, No. 7Current Trends in ERP Analysis Using EEG and EEG/fMRI Synergistic MethodsK. Michalopoulos, M. Zervakis and N. Bourbakis15 December 2013A short history of causal modeling of fMRI dataKlaas Enno Stephan and Alard Roebroeck1 Aug 2012 | NeuroImage, Vol. 62, No. 2A personalized history of EEG–fMRI integrationHelmut Laufs1 Aug 2012 | NeuroImage, Vol. 62, No. 2EEG-informed fMRI analysis during a hand grip taskR. Sclocco, M. G. Tana, E. Visani, I. Gilioli and F. Panzica et al.1 Aug 2012Methods for Simultaneous EEG-fMRI: An Introductory ReviewRené J. Huster, Stefan Debener, Tom Eichele and Christoph S. Herrmann2 May 2012 | The Journal of Neuroscience, Vol. 32, No. 18Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic MapsSabrina Pitzalis, Francesca Strappini, Marco De Gasperis, Alessandro Bultrini and Francesco Di Russo et al.25 April 2012 | PLoS ONE, Vol. 7, No. 4Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical priorTakatsugu Aihara, Yusuke Takeda, Kotaro Takeda, Wataru Yasuda and Takanori Sato et al.1 Feb 2012 | NeuroImage, Vol. 59, No. 4Hybrid Optical–Electrical Brain Computer Interfaces, Practices and PossibilitiesTomas E. Ward7 July 2012Recent developments of functional magnetic resonance imaging research for drug development in Alzheimer's diseaseHarald Hampel, David Prvulovic, Stefan J. Teipel and Arun L.W. Bokde1 Dec 2011 | Progress in Neurobiology, Vol. 95, No. 4Role of local network oscillations in resting-state functional connectivityJoana Cabral, Etienne Hugues, Olaf Sporns and Gustavo Deco1 Jul 2011 | NeuroImage, Vol. 57, No. 1Analysis of Multimodal Neuroimaging DataFelix Biessmann, Sergey Plis, Frank C. Meinecke, Tom Eichele and Klaus-Robert Muller1 Jan 2011 | IEEE Reviews in Biomedical Engineering, Vol. 4 Recommended Vol. 09, No. 04 Metrics History Received 1 August 2010 Accepted 17 September 2010 KeywordsNeuroimaginginformation fusionfunctional segregationfunctional integrationevent-relatedneurophysiologydata-drivenmodel-basedBayesian analysismodel comparisonPDF download

Referência(s)