Synaptosome-Associated Protein of 25 Kilodaltons Modulates Kv2.1 Voltage-Dependent K+ Channels in Neuroendocrine Islet β-Cells through an Interaction with the Channel N Terminus
2002; Oxford University Press; Volume: 16; Issue: 11 Linguagem: Inglês
10.1210/me.2002-0058
ISSN1944-9917
AutoresPatrick E. MacDonald, Guotang Wang, Sharon Tsuk, Dodo Chikvashvili, Youhou Kang, Lan Tang, Michael B. Wheeler, Mark S. Cattral, Jonathan R. T. Lakey, Anne Marie Salapatek, Ilana Lotan, Herbert Y. Gaisano,
Tópico(s)Pancreatic function and diabetes
ResumoInsulin secretion is initiated by ionic events involving membrane depolarization and Ca(2+) entry, whereas exocytic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins mediate exocytosis itself. In the present study, we characterize the interaction of the SNARE protein SNAP-25 (synaptosome-associated protein of 25 kDa) with the beta-cell voltage-dependent K(+) channel Kv2.1. Expression of Kv2.1, SNAP-25, and syntaxin 1A was detected in human islet lysates by Western blot, and coimmunoprecipitation studies showed that heterologously expressed SNAP-25 and syntaxin 1A associate with Kv2.1. SNAP-25 reduced currents from recombinant Kv2.1 channels by approximately 70% without affecting channel localization. This inhibitory effect could be partially alleviated by codialysis of a Kv2.1N-terminal peptide that can bind in vitro SNAP-25, but not the Kv2.1C-terminal peptide. Similarly, SNAP-25 blocked voltage-dependent outward K(+) currents from rat beta-cells by approximately 40%, an effect that was completely reversed by codialysis of the Kv2.1N fragment. Finally, SNAP-25 had no effect on outward K(+) currents in beta-cells where Kv2.1 channels had been functionally knocked out using a dominant-negative approach, indicating that the interaction is specific to Kv2.1 channels as compared with other beta-cell Kv channels. This study demonstrates that SNAP-25 can regulate Kv2.1 through an interaction at the channel N terminus and supports the hypothesis that SNARE proteins modulate secretion through their involvement in regulation of membrane ion channels in addition to exocytic membrane fusion.
Referência(s)