A Molecular Actinide–Tellurium Bond and Comparison of Bonding in [M III {N(TeP i Pr 2 ) 2 } 3 ] (M=U, La)
2006; Wiley; Volume: 118; Issue: 10 Linguagem: Inglês
10.1002/ange.200503372
ISSN1521-3757
AutoresAndrew J. Gaunt, Brian L. Scott, Mary P. Neu,
Tópico(s)Coordination Chemistry and Organometallics
ResumoAngewandte ChemieVolume 118, Issue 10 p. 1668-1671 Zuschrift A Molecular Actinide–Tellurium Bond and Comparison of Bonding in [MIII{N(TePiPr2)2}3] (M=U, La)† Andrew J. Gaunt Dr., Andrew J. Gaunt Dr. Actinide, Catalysis, and Separations (C-SIC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Fax: (+1) 505-667-9905Search for more papers by this authorBrian L. Scott Dr., Brian L. Scott Dr. Actinide, Catalysis, and Separations (C-SIC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Fax: (+1) 505-667-9905Search for more papers by this authorMary P. Neu Dr., Mary P. Neu Dr. [email protected] Actinide, Catalysis, and Separations (C-SIC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Fax: (+1) 505-667-9905Search for more papers by this author Andrew J. Gaunt Dr., Andrew J. Gaunt Dr. Actinide, Catalysis, and Separations (C-SIC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Fax: (+1) 505-667-9905Search for more papers by this authorBrian L. Scott Dr., Brian L. Scott Dr. Actinide, Catalysis, and Separations (C-SIC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Fax: (+1) 505-667-9905Search for more papers by this authorMary P. Neu Dr., Mary P. Neu Dr. [email protected] Actinide, Catalysis, and Separations (C-SIC), Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA, Fax: (+1) 505-667-9905Search for more papers by this author First published: 20 February 2006 https://doi.org/10.1002/ange.200503372Citations: 9 † This work was funded by the Heavy Element Chemistry Research Program, Chemical Sciences Division of the Office of Basic Energy Sciences, US Department of Energy, and by the G. T. Seaborg Institute at Los Alamos National Laboratory. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Werden die Actinoide weich? Der erste molekulare Komplex mit einer Actinoid-Tellur-Bindung, [U{N(TePiPr2)2}3] (siehe Bild), und der isostrukturelle Komplex [La{N(TePiPr2)2}3] wurden kristallographisch charakterisiert. Die UIII-Te-Bindung ist um 0.06 Å kürzer als die LaIII-Te-Bindung, was mit größeren kovalenten Beiträgen bei der Bindung des Actinoids an den weichen Donor erklärt werden kann. Supporting Information Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1See, for example: Google Scholar 1aS. Cotton in Comprehensive Coordination Chemistry II, Vol. 3 (Eds.: ), Elsevier Pergamon, Amsterdam, 2004, p. 93; 10.1016/B0-08-043748-6/02004-1 Google Scholar 1bC. J. Burns, M. P. Neu, H. Boukhalfa, K. E. Gutowski, N. J. Bridges, R. D. Rogers, in Comprehensive Coordination Chemistry II, Vol. 3 (Ed.: ), Elsevier Pergamon, Amsterdam, 2004, p. 189; 10.1016/B0-08-043748-6/02001-6 Google Scholar 1cJ. J. Katz, G. T. Seaborg, L. R. Morss, The Chemistry of the Actinide Elements, Vols. 1 and 2, 2nd ed., Chapman and Hall, New York, 1986. 10.1007/978-94-009-4077-2 Google Scholar 2A. Streitwieser, U. Müller-Westerhoff, J. Am. Chem. Soc. 1968, 90, 7364. 10.1021/ja01028a044 CASWeb of Science®Google Scholar 3 3aG. R. Choppin, J. Alloys Compd. 2002, 344, 55; 10.1016/S0925-8388(02)00305-5 CASWeb of Science®Google Scholar 3bG. R. Choppin, K. L. Nash, Radiochim. Acta 1995, 70–71, 225; Web of Science®Google Scholar 3cM. P. Jensen, A. H. Bond, Radiochim. Acta 2002, 90, 205; 10.1524/ract.2002.90.4_2002.205 CASWeb of Science®Google Scholar 3dL. Karmazin, M. Mazzanti, J. Pécaut, Chem. Commun. 2002, 654; 10.1039/b200315p CASPubMedWeb of Science®Google Scholar 3eT. Mehdoui, J.-C. Berthet, P. Thuéry, M. Ephritikhine, Chem. Commun. 2005, 2860; 10.1039/b503526k CASPubMedWeb of Science®Google Scholar 3fJ. G. Brennan, S. D. Stults, R. A. Andersen, A. Zalkin, Organometallics 1988, 7, 1329; 10.1021/om00096a016 CASWeb of Science®Google Scholar 3gF. Nief, Coord. Chem. Rev. 1998, 178–180, 13. 10.1016/S0010-8545(98)00059-9 CASWeb of Science®Google Scholar 4 4aG. G. Briand, T. Chivers, M. Parvez, Angew. Chem. 2002, 114, 3618; 10.1002/1521-3757(20020916)114:18 3.0.CO;2-Q Google ScholarAngew. Chem. Int. Ed. 2002, 41, 3468; 10.1002/1521-3773(20020916)41:18 3.0.CO;2-W PubMedWeb of Science®Google Scholar 4bT. Chivers, D. J. Eisler, J. S. Ritch, Dalton Trans. 2005, 2675. 10.1039/b506174a CASPubMedWeb of Science®Google Scholar 5Crystal data for 1: C36H84N3P6Te6U, Mr=1748.51, monoclinic, space group P21/c, a=22.3600(18), b=13.7678(11), c=20.6919(17) Å, β=113.405(2)°, V=5845.8(8) Å3, Z=4, T=141(1) K, μ=5.901 mm−1, reflections collected/independent=45 125/9364 (R(int)=0.1090), R1(I>2σ(I))=0.0383, and wR2(I>2σ(I))=0.0643. Crystal data for 2: C36H84LaN3P6Te6, Mr=1649.39, monoclinic, space group P21/c, a=22.456(6), b=13.866(4), c=20.828(5) Å, β=113.295(3)°, V=5957(3) Å3, Z=4, T=141(1) K, μ=3.784 mm−1, reflections collected/independent=54 148/10 952 (R(int)=0.1071), R1(I>2σ(I))=0.0544, and wR2(I>2σ(I))=0.1285. The crystals were mounted in a nylon cryoloop from Paratone-N oil under an argon gas flow. The data were collected on a Bruker SMART APEX II CCD diffractometer, with a KRYO-FLEX liquid nitrogen vapor cooling device. The instrument was equipped with a graphite-monochromated MoKα X-ray source (λ=0.71073 Å), with MonoCap X-ray source optics. A hemisphere of data was collected using ω-scans, with 5-s frame exposures and 0.3° frame-widths. Data collection and initial indexing and cell refinement were handled using APEX II[13] software. Frame integration, including Lorentz-polarization corrections and final cell parameter calculations, were carried out using SAINT+[14] software. The data were corrected for adsorption using the SADABS[15] program. Decay of reflection intensity was monitored by analysis of redundant frames. The structure was solved by direct methods and difference Fourier techniques. All hydrogen atom positions were idealized as riding on the atom they are attached to. All non-hydrogen atoms were refined anisotropically. Structure solution, refinement, graphics, and creation of publication materials were performed using SHELXTL.[16] CCDC-283264 (1) and -283265 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Google Scholar 6A. J. Gaunt, B. L. Scott, M. P. Neu, Chem. Commun. 2005, 3215. 10.1039/b503106k CASPubMedWeb of Science®Google Scholar 7D. J. Williams, C. O. Quicksall, K. M. Barkigia, Inorg. Chem. 1982, 21, 2097. 10.1021/ic00135a078 CASWeb of Science®Google Scholar 8J. Waters, D. Crouch, J. Raftery, P. O'Brien, Chem. Mater. 2004, 16, 3289. 10.1021/cm035287o CASWeb of Science®Google Scholar 9 9aD. J. Berg, R. A. Andersen, A. Zalkin, Organometallics 1988, 7, 1858; 10.1021/om00098a025 CASWeb of Science®Google Scholar 9bA. Kornienko, D. Freedman, T. J. Emge, J. G. Brennan, Inorg. Chem. 2001, 40, 140; 10.1021/ic000499y CASPubMedWeb of Science®Google Scholar 9cA. Recknagel, M. Noltemeyer, D. Stalke, U. Pieper, H. G. Schmidt, F. T. Edelmann, J. Organomet. Chem. 1991, 411, 347; 10.1016/0022-328X(91)83040-B CASWeb of Science®Google Scholar 9dW. J. Evans, G. W. Rabe, J. W. Ziller, R. J. Doedens, Inorg. Chem. 1994, 33, 2719; 10.1021/ic00091a009 CASWeb of Science®Google Scholar 9eD. Freedman, T. J. Emge, J. G. Brennan, Inorg. Chem. 2002, 41, 492; 10.1021/ic010981w CASPubMedWeb of Science®Google Scholar 9fA. C. Hillier, S. Y. Liu, A. Sella, M. R. J. Elsegood, Inorg. Chem. 2000, 39, 2635; 10.1021/ic9914793 CASPubMedWeb of Science®Google Scholar 9gD. R. Cary, J. Arnold, J. Am. Chem. Soc. 1993, 115, 2520. 10.1021/ja00059a064 CASWeb of Science®Google Scholar 10R. D. Shannon, C. T. Prewitt, Acta Crystallogr. Sect. B 1970, 26, 1046 (revised effective ionic radii). 10.1107/S0567740870003576 CASWeb of Science®Google Scholar 11L. R. Avens, S. G. Bott, D. L. Clark, A. P. Sattelberger, J. G. Watkin, B. D. Zwick, Inorg. Chem. 1994, 33, 2248. 10.1021/ic00088a030 CASWeb of Science®Google Scholar 12We thank Professor Tristram Chivers at the University of Calgary, Canada, for a personal communication providing further details of the synthesis of [Na(tmeda){N(TePiPr2)2}] given in reference [4b]. Google Scholar 13APEX II 1.08, 2004, Bruker AXS, Inc., Madison, Wisconsin 53719. Google Scholar 14SAINT+ 7.06, 2003, Bruker AXS, Inc., Madison, Wisconsin 53719. Google Scholar 15SADABS 2.03, 2001, G. Sheldrick, University of Göttingen, Germany. Google Scholar 16SHELXTL 5.10, 1997, Bruker AXS, Inc., Madison, Wisconsin 53719. Google Scholar Citing Literature Volume118, Issue10February 27, 2006Pages 1668-1671 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)