The design and performance of IceCube DeepCore
2012; Elsevier BV; Volume: 35; Issue: 10 Linguagem: Inglês
10.1016/j.astropartphys.2012.01.004
ISSN1873-2852
AutoresRasha Abbasi, Y. Abdou, T. Abu-Zayyad, M. Ackermann, J. Adams, J. A. Aguilar, M. Ahlers, M. M. Allen, D. Altmann, K. Andeen, J. Auffenberg, X. Bai, M. D. Baker, S. W. Barwick, R. Bay, J. L. Bazo Alba, K. Beattie, J. J. Beatty, S. Bechet, J. K. Becker, K. H. Becker, M. L. Benabderrahmane, S. BenZvi, Jens Berdermann, P. Berghaus, D. Berley, E. Bernardini, Daniel Bertrand, D. Besson, D. Bindig, M. Bissok, E. Blaufuss, J. Blumenthal, D. J. Boersma, C. Böhm, D. Bose, S. Böser, O. Botner, A. M. Brown, S. Buitink, K. S. Caballero‐Mora, M. Carson, D. Chirkin, B. Christy, F. Clevermann, S. Cohen, C. Colnard, D. F. Cowen, A.H. Cruz Silva, M. V. D’Agostino, M. Danninger, J. Daughhetee, J. C. Davis, C. De Clercq, T. Degner, L. Demirörs, F. Descamps, P. Desiati, G. de Vries‐Uiterweerd, T. DeYoung, J. C. Díaz–Vélez, M. Dierckxsens, J. Dreyer, J. P. Dumm, M. Dunkman, J. Eisch, R. W. Ellsworth, O. Engdegård, S. Euler, P. A. Evenson, O. Fadiran, A. R. Fazely, A. Fedynitch, J. Feintzeig, T. Feusels, K. Filimonov, C. Finley, T. Fischer-Wasels, B. D. Fox, A. Franckowiak, Robert Franke, T. K. Gaisser, J. S. Gallagher, L. Gerhardt, L. Gladstone, T. Glüsenkamp, A. Goldschmidt, J. A. Goodman, D. Góra, D. Grant, T. Griesel, A. Groß, S. Grullon, M. Gurtner, C. Ha, A. Haj Ismail, A. Hallgren, F. Halzen, K. Han, K. Hanson, D. Heinen, K. Helbing, R. Hellauer, S. Hickford, G. C. Hill, K. D. Hoffman, Benjamin D. Hoffmann, A. Homeier, K. Hoshina, W. Huelsnitz, J.-P. Hülß, P. O. Hulth, K. Hultqvist, Shahid Hussain, A. Ishihara, E. Jacobi, J. Jacobsen, G. S. Japaridze, Henrik Johansson, K.‐H. Kampert, A. Kappes, T. Karg, A. Karle, Patrick Kenny, J. Kiryluk, F. Kislat, S. R. Klein, J.-H. Köhne, G. Kohnen, H. Kolanoski, L. Köpke, D. J. Koskinen, M. Kowalski, T. Kowarik, M. Krasberg, G. Kroll, N. Kurahashi, T. Kuwabara, M. Labare, K. Laihem, H. Landsman, M. J. Larson, R. Lauer, J. Lünemann, J. Madsen, Anna Marotta, R. Maruyama, K. Mase, H. S. Matis, K. Meagher, M. Merck, P. Mészáros, T. Meures, S. Miarecki, E. Middell, N. Milke, J. Miller, T. Montaruli, R. Morse, S. M. Movit, R. Nahnhauer, J. W. Nam, Uwe Naumann, D. R. Nygren, S. Odrowski, A. Olivas, M. Olivo, A. O’Murchadha, S. Panknin, L. Paul, C. Pérez de los Heros, J. Petrović, A. Piegsa, D. Pieloth, R. Porrata, J. Posselt, P. B. Price, G. T. Przybylski, K. Rawlins, P. Redl, E. Resconi, W. Rhode, M. Ribordy, M. Richman, J. P. Rodrigues, F. Rothmaier, C. Rott, T. Ruhe, D. Rutledge, B. Ruzybayev, D. Ryckbosch, H.‐G. Sander, M. Santander, S. Sarkar, K. Schatto, T. Schmidt, A. Schönwald, A. Schukraft, A. Schultes, O. Schulz, M. Schunck, D. Seckel, B. Semburg, H. Seo, Y. Sestayo, S. Seunarine, A. Silvestri, G. M. Spiczak, Christian Spiering, M. Stamatikos, T. Stanev, T. Stezelberger, R. G. Stokstad, A. Stößl, E. A. Strahler, L. R. Strom, M. Stüer, G. W. Sullivan, Q. Swillens, H. Taavola, I. Taboada, A. Tamburro, A. Tepe, S. Ter–Antonyan, S. Tilav, P. A. Toale, S. Toscano, D. Tosi, N. van Eijndhoven, J. Vandenbroucke, A. Van Overloop, J. V. Santen, M. Vehring, M. Vöge, C. Walck, T. Waldenmaier, M. Wallraff, M. Walter, Ch. Weaver, C. Wendt, S. Westerhoff, N. Whitehorn, K. Wiebe, C. H. Wiebusch, D. R. Williams, R. Wischnewski, H. Wissing, M. Wolf, T. R. Wood, K. Woschnagg, C. Xu, D. L. Xu, Xiaolin Xu, Juan Pablo Yáñez, G. Yodh, S. Yoshida, P. Zarzhitsky, M. Zoll,
Tópico(s)Dark Matter and Cosmic Phenomena
ResumoThe IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.
Referência(s)