Artigo Acesso aberto Revisado por pares

Macronutrient selection, absorption and energy budget of juveniles of the Australasian sea cucumber, Australostichopus mollis , feeding on mussel biodeposits at different temperatures

2014; Wiley; Volume: 21; Issue: 2 Linguagem: Inglês

10.1111/anu.12144

ISSN

1365-2095

Autores

Leonardo N. Zamora, Andrew Jeffs,

Tópico(s)

Marine Bivalve and Aquaculture Studies

Resumo

Aquaculture NutritionVolume 21, Issue 2 p. 162-172 Original Article Macronutrient selection, absorption and energy budget of juveniles of the Australasian sea cucumber, Australostichopus mollis, feeding on mussel biodeposits at different temperatures L.N. Zamora, Corresponding Author L.N. Zamora Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New ZealandCorrespondence: L.N. Zamora, Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand. E-mail: [email protected]Search for more papers by this authorA.G. Jeffs, A.G. Jeffs Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New ZealandSearch for more papers by this author L.N. Zamora, Corresponding Author L.N. Zamora Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New ZealandCorrespondence: L.N. Zamora, Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand. E-mail: [email protected]Search for more papers by this authorA.G. Jeffs, A.G. Jeffs Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, New ZealandSearch for more papers by this author First published: 26 February 2014 https://doi.org/10.1111/anu.12144Citations: 10Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract This study was set up to examine the selection and absorption of macronutrients (lipid, protein and carbohydrate) of juveniles of the Australasian sea cucumber Australostichopus mollis, feeding on an effective natural feed (mussel waste) at different temperatures. Our results indicate that the juveniles select and absorb lipid more efficiently than carbohydrate and protein at all temperatures. However, the overall magnitude of absorption of carbohydrate and protein make them the main source of nutritional energy for juvenile sea cucumbers. Seawater temperature affects the feeding behaviour of the juveniles, reducing the selection efficiency of macronutrients, while increasing metabolic energy demand, resulting in less energy available for growth. These results show the importance of each macronutrient in the diet of A. mollis as a source of energy for growth, which opens up the possibility to replace more expensive nutrient sources, such as protein and lipid, with less costly carbohydrate to reduce costs of diet formulation. References An, Z.H., Dong, Y.W. & Dong, S.L. (2007) Temperature effects on growth-ration relationships of juvenile sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 272, 644– 648. Auckland Regional Council. (2008) State of the environment monitoring: Marine water quality data report 2006. Auckland Regional Council Technical Report Number 008. Bligh, E.G. & Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37, 911– 917. Bradford, M.M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248– 254. Byers, S.C., Mills, E.L. & Stewart, P.L. (1978) A comparison of methods of determining carbon in marine sediments, with suggestions for a standard method. Hydrobiologia, 58, 43– 47. Cho, C.Y. & Kaushik, S.J. (1990) Nutritional energetics in fish energy and protein utilization in rainbow trout (Salmo gairdneri). World Rev. Nutr. Diet., 61, 132– 172. Dong, Y., Dong, S., Tian, X., Wang, F. & Zhang, M. (2006) Effects of diel temperature fluctuations on growth, oxygen consumption and proximate body composition in the sea cucumber Apostichopus japonicus Selenka. Aquaculture, 255, 514– 521. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350– 356. Elliot, J.M. & Davison, W. (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia, 19, 195– 201. Gao, F., Yang, H., Xu, Q., Wang, F., Liu, G. & German, D. (2008) Phenotypic plasticity of gut structure and function during periods of inactivity in Apostichopus japonicus. Comp. Biochem. Phys. B, 150, 255– 262. Gao, F., Yang, H., Xu, Q., Wang, F. & Liu, G. (2009) Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation. Chinese J. Oceanol. Limnol., 27, 714– 722. Guillaume, J. (2001) Terminology and methodology. In: Nutrition and Feeding of Fish and Crustaceans ( J. Guillaume, R. Metailler, S. Kaushik & P. Bergot eds), pp. 9– 16. Springer-Verlag, Berlin. Hudson, I., Wighama, B., Solan, M. & Rosenberg, R. (2005) Feeding behaviour of deep-sea dwelling holothurians: inferences from a laboratory investigation of shallow fjordic species. J. Mar. Syst., 57, 201– 218. Huiling, S., Mengqinq, L., Jingping, Y. & Bijuan, C. (2004) Nutrient requirements and growth of the sea cucumber, Apostichopus japonicus. In: Advances in Sea Cucumber Aquaculture and Management ( A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.F. Hamel & A. Mercier eds), pp. 327– 331. FAO Fisheries Technical Paper No 463, Rome. Kennedy, E.J., Robinson, S.M.C., Parsons, G.J. & Castell, J.D. (2007) Effect of lipid source and concentration on somatic growth of juvenile green sea urchins, Strongylocentrotus droebachiensis. J. World Aquacul. Soc., 38, 335– 352. Lawrence, J.M. & Lane, J.M. (1982) The utilization of nutrients by postmetamorphic echinoderms. In: Echinoderm Nutrition ( M. Jangoux & J.M. Lawrence eds), pp. 331– 371. A.A. Balkema, Rotterdam. Lawrence, J.M., Lawrence, A.L. & Watts, S.A. (2007) Feeding, digestion, and digestibility. In: Edible Sea Urchins: Biology and Ecology ( J.M. Lawrence ed), pp. 135– 158. Elsevier, Amsterdam. Liu, F. (2010) Collagen, amino acids, lipids and fatty acids present in New Zealand sea cucumber (Australostichopus mollis). MSc Thesis. University of Auckland, New Zealand. Liu, Y., Dong, S., Tian, X., Wang, F. & Gao, Q. (2009) Effects of dietary sea mud and yellow soil on growth and energy budget of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture, 286, 266– 270. Massin, C. (1982) Feed and feeding mechanisms. Holothuroidea. In: Echinoderm Nutrition ( M. Jangoux & J.M. Lawrence eds), pp. 43– 55. AA Balkema, Rotterdam. Maxwell, K., Gardner, J. & Heath, P. (2009) The effect of diet on the energy budget of the brown sea cucumber, Stichopus mollis (Hutton). J. World Aquacul. Soc., 40, 157– 170. Ministry of Fisheries (2011) Report from the Fisheries Assessment Plenary, May 2011: Stock Sssessments and Yield Estimates. Ministry of Fisheries, Wellington p. 1178. Moriarty, D.J.W. (1982) Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Mar. Freshwater Res., 33, 255– 263. Otero-Villanueva, M.N., Kelly, M.S. & Burnell, G. (2004) How diet influences energy partitioning in the regular echinoid, Psammechinus miliaris; constructing an energy budget. J. Exp. Mar. Biol. Ecol., 304, 159– 181. Pawson, D.L. (1970) The marine fauna of New Zealand: sea cucumbers (Echinodermata: Holothuroidea). New Zeal. Dep. Scient. Ind. Res. Bull., 201, 1– 70. Pitt, R. & Duy, N.D.Q. (2004) Breeding and rearing of the sea cucumber Holothuria scabra in Viet Nam. In: Advances in Sea Cucumber Aquaculture and Management ( A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.F. Hamel & A. Mercier eds), pp. 333– 346. FAO Fisheries Technical Paper No 463, Rome. Purcell, S.W., Samyn, Y. & Conand, C. (2012) Commercially Important Sea Cucumbers of the World. FAO species catalogue for fishery purposes No 6, p. 150. FAO, Rome. Quinn, G. & Keough, M. (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge pp. 537 Raj, L.K. (1998) Reproductive biology and the use of photo identification to study growth in Stichopus mollis (Echinodermata: Holothuroidea) in Doubtful Sound, Fiordland. MSc Thesis, University of Otago, New Zealand. Renbo, W. & Yuan, C. (2004) Breeding and culture of the sea cucumber, Apostichopus japonicas, Liao. In: Advances in Sea Cucumber Aquaculture and Management ( A. Lovatelli, C. Conand, S. Purcell, S. Uthicke, J.F. Hamel & A. Mercier eds), pp. 277– 286. FAO Fisheries Technical Paper No 463, Rome. Ricker, W.E. (1968) Methods for assessment of fish production in fresh waters. In: Blackwell International Biological Program Handbook No. 3. F. A. Davis, Philadelphia, PA, pp. 313 Roberts, D., Gebruk, A., Levin, V. & Manship, B.A.D. (2000) Feeding and digestive strategies in deposit-feeding holothurians. Oceanogr. Mar. Biol., 38, 257– 310. Scarsbrook, M. (2008) Saline water quality state and trends in the Auckland region. Prepared by National Institute of Water and Atmospheric Research Limited for Auckland Regional Council. Regional Council Technical Report 2008/005. 54 pages. Seo, J.-Y. & Lee, S.-M. (2011) Optimum dietary protein and lipid levels for growth of juvenile sea cucumber Apostichopus japonicus. Aquacult. Nutr., 17, 56– 61. Seo, Y., Shin, I. & Lee, S. (2011) Effect of dietary inclusion of various plant ingredients as an alternative for Sargassum thunbergii on growth and body composition of juvenile sea cucumber Apostichopus japonicus. Aquacult. Nutr., 17, 549– 556. Sewell, M.A. (1990) Aspects of the ecology of Stichopus mollis (Echinodermata: Holothuroidea) in north-eastern New Zealand. New. Zeal. J. Mar. Fresh., 24, 97– 103. Slater, M.J. & Carton, A.G. (2007) Survivorship and growth of the sea cucumber Australostichopus (Stichopus) mollis (Hutton 1872) in polyculture trials with green-lipped mussel farms. Aquaculture, 272, 389– 398. Slater, M.J., Jeffs, A.G. & Carton, A.G. (2009) The use of the waste from green-lipped mussels as a feed source for juvenile sea cucumber, Australostichopus mollis. Aquaculture, 292, 219– 224. Slater, M.J., Jeffs, A.G. & Sewell, M.A. (2011a) Organically selective movement and deposit-feeding in juvenile sea cucumber, Australostichopus mollis determined in situ and in the laboratory. J. Exp. Mar. Biol. Ecol., 409, 315– 323. Slater, M.J., Lassurdrie, M. & Jeffs, A.G. (2011b) Method for determining apparent digestibility of carbohydrate and protein sources for artificial diets for juvenile sea cucumber, Australostichopus mollis. J. World Aquacul. Soc., 42, 714– 725. Uthicke, S. & Karez, R. (1999) Sediment patch selectivity in tropical sea cucumbers (Holothuroidea: Aspidochirotida) analysed with multiple choice experiments. J. Exp. Mar. Biol. Ecol., 236, 69– 87. Wang, T., Sun, Y., Jin, L., Xu, Y., Wang, L., Ren, T. & Wang, K. (2009) Enhancement of non-specific immune response in sea cucumber (Apostichopus japonicus) by Astragalus membranaceus and its polysaccharides. Fish Shellfish Immunol., 27, 757– 762. Wen, J., Hua, C. & Fana, S. (2010) Chemical composition and nutritional quality of sea cucumbers. J. Sci. Food Agr., 90, 2469– 2474. Xia, S., Yang, H., Li, Y., Liu, S., Xu, Q. & Rajkumar, M. (2013) Effects of food processing method on digestibility and energy budget of Apostichopus japonicus. Aquaculture, 384–387, 128– 133. Yang, H.S., Yuan, X.T., Zhou, Y., Mao, Y., Zhang, T. & Liu, Y. (2005) Effects of body weight and water temperature on food consumption and growth in the sea cucumber Apostichopus japonicus (Selenka) with special reference to aestivation. Aquac. Res., 36, 1085– 1092. Yingst, J.Y. (1976) The utilization of organic matter in shallow marine sediments by an epibenthic deposit-feeding holothurian. J. Exp. Mar. Biol. Ecol., 23, 55– 69. Yuan, X.T., Yang, H.S., Zhou, Y., Mao, Y.Z., Zhang, T. & Liu, Y. (2006) The influence of diets containing dried bivalve feces and/or powdered algae on growth and energy distribution in sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea). Aquaculture, 256, 457– 467. Yuan, X.T., Yang, H.S., Wang, L., Zhou, Y. & Gabr, H.R. (2009) Bioenergetic responses of sub-adult sea cucumber Apostichopus japonicus (Selenka) (Echinodermata: Holothuroidea) to temperature with special discussion regarding its southernmost distribution limit in China. J. Therm. Biol, 34, 315– 319. Zamora, L.N. & Jeffs, A.G. (2011) Feeding, selection, digestion and absorption of the organic matter from mussel waste by juveniles of the deposit-feeding sea cucumber, Australostichopus mollis. Aquaculture, 317, 223– 228. Zamora, L.N. & Jeffs, A.G. (2012a) The ability of the deposit-feeding sea cucumber Australostichopus mollis to use natural variation in the biodeposits beneath mussel farms. Aquaculture, 326–329, 116– 122. Zamora, L.N. & Jeffs, A.G. (2012b) Feeding, metabolism and growth in response to temperature in juveniles of the Australasian sea cucumber, Australostichopus mollis. Aquaculture, 358–359, 92– 97. Zhang, Q., Ma, H., Mai, K., Zhang, W., Fu, Z. & Xu, W. (2010) Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus. Fish Shellfish Immunol., 29, 204– 211. Citing Literature Volume21, Issue2April 2015Pages 162-172 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX