Artigo Revisado por pares

Silyl-Mediated Halogen/Halogen Displacement in Pyridines and Other Heterocycles

2002; Wiley; Volume: 2002; Issue: 24 Linguagem: Inglês

10.1002/1099-0690(200212)2002

ISSN

1434-193X

Autores

Manfred Schlosser, Fabrice Cottet,

Tópico(s)

Synthesis and Biological Evaluation

Resumo

European Journal of Organic ChemistryVolume 2002, Issue 24 p. 4181-4184 Full Paper Silyl-Mediated Halogen/Halogen Displacement in Pyridines and Other Heterocycles Manfred Schlosser, Manfred Schlosser [email protected] Institut de Chimie moléculaire et biologique, Ecole Polytechnique Fédérale, BCh, 1015 Lausanne, Switzerland Faculté des Sciences, Université, BCh 1015 Lausanne, SwitzerlandSearch for more papers by this authorFabrice Cottet, Fabrice Cottet Institut de Chimie moléculaire et biologique, Ecole Polytechnique Fédérale, BCh, 1015 Lausanne, SwitzerlandSearch for more papers by this author Manfred Schlosser, Manfred Schlosser [email protected] Institut de Chimie moléculaire et biologique, Ecole Polytechnique Fédérale, BCh, 1015 Lausanne, Switzerland Faculté des Sciences, Université, BCh 1015 Lausanne, SwitzerlandSearch for more papers by this authorFabrice Cottet, Fabrice Cottet Institut de Chimie moléculaire et biologique, Ecole Polytechnique Fédérale, BCh, 1015 Lausanne, SwitzerlandSearch for more papers by this author First published: 26 November 2002 https://doi.org/10.1002/1099-0690(200212)2002:24 3.0.CO;2-MCitations: 39Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Heating with bromotrimethylsilane converts 2-chloropyridine into 2-bromopyridine and 2-chloro-6-methylpyridine into 2-bromo-6-methylpyridine. Both 2-chloropyridines and 2-bromopyridines give the corresponding iodo compound when treated with in situ generated iodotrimethylsilane. Although 3- and 4-chloropyridine are completely inert, 2,4-dichloropyridine undergoes the halogen/halogen exchange simultaneously at the 2- and 4-position. Halogen displacement takes place exclusively at the 2-position with 2,3-dichloropyridine and 2,5-dichloropyridine. In agreement with the intermediacy of N-trimethylsilylpyridinium salts as a prerequisite for the occurrence of halogen exchange, neither 2-fluoropyridine and 2-fluoro-6-methylpyridine nor any 2,6-dihalopyridine reacts. Finally, bromine/chlorine and iodine/chlorine substitution can also be accomplished with 2- or 4-chloroquinoline, 1-chloroisoquinoline, 2-chloropyrimidine, chloropyrazine and 2,3-dichloroquinoxaline as substrates. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2002) References 1 M. Schlosser, in Organometallics in Synthesis: A Manual (Ed.: M. Schlosser), 2nd ed., Wiley, Chichester, 2002, p. 1−352, specially p. 95 and 134, see also p. 135−136. Google Scholar 2 F. Trécourt , G. Breton , V. Bonnet , F. Mongin , F. Marsais , G. Quéguiner , Tetrahedron 2000 , 56 , 1349 −1360 . 10.1016/S0040-4020(00)00027-2 CASWeb of Science®Google Scholar 3 T. Iida , T. Wada , K. Tomimoto , T. Mase , Tetrahedron Lett. 2001 , 42 , 4841 −4844 . 10.1016/S0040-4039(01)00861-9 CASWeb of Science®Google Scholar 4 F. Cottet , M. Schlosser , Eur. J. Org. Chem. 2002 , 327 −330 . 10.1002/1099-0690(20021)2002:2 3.0.CO;2-V CASWeb of Science®Google Scholar 5 N. Miyaura , A. Suzuki , Chem. Rev. 1995 , 95 , 2457 −2483 , specially p. 2470. 10.1021/cr00039a007 CASWeb of Science®Google Scholar 6 Y. Gong , H. W. Pauls , Synlett 2000 , 829 −831 . CASWeb of Science®Google Scholar 7 G. Karig , N. Thasana , T. Gallagher , Synlett 2002 , 808 −810 . 10.1055/s-2002-25342 CASWeb of Science®Google Scholar 8 F. Mutterer , C. D. Weis , Helv. Chim. Acta 1976 , 59 , 229 −235 . 10.1002/hlca.19760590125 CASWeb of Science®Google Scholar 9 K. Hensen , T. Zengerly , P. Pickel , G. Klebe , Angew. Chem. 1983, 95, 739−740; Angew. Chem. Int. Ed. Engl. 1983 , 22 , 725 −726 ; Angew. Chem. Suppl. 1983, 973−984. 10.1002/anie.198307251 Web of Science®Google Scholar 10 E. Anders , A. Stankowiak , R. Riemer , Synthesis 1987 , 931 −934 . 10.1055/s-1987-28128 CASWeb of Science®Google Scholar 11 G. A. Olah , D. A. Klumpp , Synthesis 1997 , 744 −746 . 10.1055/s-1997-1421 CASWeb of Science®Google Scholar 12 D. H. Aue , H. M. Webb , W. R. Davidson , P. Toure , H. P. Hopkins , S. P. Moulik , D. V. Jahagirdar , J. Am. Chem. Soc. 1991 , 113 , 1770 −1780 . 10.1021/ja00005a048 CASWeb of Science®Google Scholar 13 D. Perrin, Dissociation Constants of Bases in Aqueous Solution (Supplement to Pure Appl. Chem.), Butterworth, London, 1965. Google Scholar 14 M. Schlosser , J. Porwisiak , F. Mongin , Tetrahedron 1998 , 54 , 895 −900 . 10.1016/S0040-4020(97)10335-0 CASWeb of Science®Google Scholar 15 Q. Wang , H.-x. Wei , M. Schlosser , Eur. J. Org. Chem. 1999 , 3263 −3268 . 10.1002/(SICI)1099-0690(199912)1999:12 3.0.CO;2-U Web of Science®Google Scholar 16 C. Bobbio , M. Schlosser , Eur. J. Org. Chem. 2001 , 4533 −4536 . 10.1002/1099-0690(200112)2001:23 3.0.CO;2-1 CASWeb of Science®Google Scholar 17 E. Marzi , A. Bigi , M. Schlosser , Eur. J. Org. Chem. 2001 , 1371 −1376 . 10.1002/1099-0690(200104)2001:7 3.0.CO;2-E CASWeb of Science®Google Scholar 18 S. Gabriel , J. Colman , Ber. Dtsch. Chem. Ges. 1900 , 33 , 980 −995 . 10.1002/cber.190003301172 Google Scholar 19 H. J. Den Hertog , J. P. Wibaut , Recl. Trav. Chim. Pays-Bas 1932 , 51 , 381 −388 . 10.1002/recl.19320510412 Google Scholar 20 H. D. Tjeenk Willink , J. P. Wibaut , Recl. Trav. Chim. Pays-Bas 1934 , 53 , 417 −420 . 10.1002/recl.19340530505 Google Scholar 21 H. C. Brown , D. H. McDaniel , J. Am. Chem. Soc. 1955 , 77 , 3752 −3755 . 10.1021/ja01619a022 CASWeb of Science®Google Scholar 22 D. Hebel , S. Rozen , J. Org. Chem. 1991 , 56 , 6298 −6301 . 10.1021/jo00022a016 CASWeb of Science®Google Scholar 23 F. H. Case , J. Am. Chem. Soc. 1946 , 68 , 2574 −2577 . 10.1021/ja01216a045 CASWeb of Science®Google Scholar 24 H. J. Den Hertog , Recl. Trav. Chim. Pays-Bas 1945 , 64 , 85 −101 . 10.1002/recl.19450640402 CASGoogle Scholar 25 G. B. Barlin , J. A. Benbow , J. Chem. Soc., Perkin Trans. 2 1975 , 298 −302 . 10.1039/p29750000298 CASWeb of Science®Google Scholar 26 R. M. Peck , R. K. Preston , H. J. Creech , J. Am. Chem. Soc. 1959 , 81 , 3984 −3989 . 10.1021/ja01524a041 CASWeb of Science®Google Scholar 27 H. E. Jansen , J. P. Wibaut , Recl. Trav. Chim. Pays-Bas 1937 , 56 , 699 −708 . 10.1002/recl.19370560712 CASGoogle Scholar 28 D. D. Bly , M. G. Mellon , J. Org. Chem. 1962 , 27 , 2945 −2946 . 10.1021/jo01055a523 CASWeb of Science®Google Scholar 29 G. Karmas , P. E. Spoerri , J. Am. Chem. Soc. 1956 , 78 , 2141 −2144 . 10.1021/ja01591a029 CASWeb of Science®Google Scholar 30 E. H. Usherwood , M. A. Whiteley , J. Chem. Soc. 1923 , 123 , 1069 −1089 . 10.1039/ct9232301069 CASWeb of Science®Google Scholar Citing Literature Volume2002, Issue24December 2002Pages 4181-4184 ReferencesRelatedInformation

Referência(s)