THE AQUEOUS PORE IN THE RED CELL MEMBRANE: BAND 3 AS A CHANNEL FOR ANIONS, CATIONS, NONELECTROLYTES, AND WATER*
1983; Wiley; Volume: 414; Issue: 1 Linguagem: Inglês
10.1111/j.1749-6632.1983.tb31678.x
ISSN1749-6632
AutoresA. K. Solomon, B. Chasan, James A. Dix, J Michael F. Lukacovic, Michael R. Toon, A. S. Verkman,
Tópico(s)Solar-Powered Water Purification Methods
ResumoAnnals of the New York Academy of SciencesVolume 414, Issue 1 p. 97-124 THE AQUEOUS PORE IN THE RED CELL MEMBRANE: BAND 3 AS A CHANNEL FOR ANIONS, CATIONS, NONELECTROLYTES, AND WATER* A. K. Solomon, A. K. Solomon Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this authorB. Chasan, B. Chasan Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115 Physics Department, Boston University, Boston, MA 02161.Search for more papers by this authorJames A. Dix, James A. Dix Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115 Department of Chemistry, SUNY, Binghamton, NY 13901.Search for more papers by this authorJ Michael F. Lukacovic, J Michael F. Lukacovic Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this authorMichael R. Toon, Michael R. Toon Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this authorA. S. Verkman, A. S. Verkman Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this author A. K. Solomon, A. K. Solomon Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this authorB. Chasan, B. Chasan Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115 Physics Department, Boston University, Boston, MA 02161.Search for more papers by this authorJames A. Dix, James A. Dix Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115 Department of Chemistry, SUNY, Binghamton, NY 13901.Search for more papers by this authorJ Michael F. Lukacovic, J Michael F. Lukacovic Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this authorMichael R. Toon, Michael R. Toon Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this authorA. S. Verkman, A. S. Verkman Biophysical Laboratory Harvard Medical School Boston, Massachusetts 02115Search for more papers by this author First published: December 1983 https://doi.org/10.1111/j.1749-6632.1983.tb31678.xCitations: 131 * Supported in part by National Institutes of Health grants 5R01 GM15692 and 2R01 HL14820 and National Science Foundation grant PCM-78–22577. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Paganelli, C. V. & A. K. Solomon. 1957. The rate of exchange of tritiaded water across the human red cell membrane. J. Gen. Physiol. 41: 259–277. 10.1085/jgp.41.2.259 CASPubMedWeb of Science®Google Scholar 2 Sidel, V. W. & A. K. Solomon. 1957. Entrance of water into human red cells under an osmotic pressure gradient. J. Gen. Physiol. 41: 243–257. 10.1085/jgp.41.2.243 CASPubMedWeb of Science®Google Scholar 3 Goldstein, D. A. & A. K. Solomon. 1960. Determination of equivalent pore radius for human red cells by osmotic pressure measurement. J. Gen. Physiol. 44: 1–17. 10.1085/jgp.44.1.1 CASPubMedWeb of Science®Google Scholar 4 Pappenheimer, J. R., E. M. Renkin & L. M. Borrero. 1951 Filtration, diffusion and molecular sieving through peripheral capillary membranes. Am. J. Physiol. 167: 13–46. 10.1152/ajplegacy.1951.167.1.13 CASPubMedWeb of Science®Google Scholar 5 Renkin, E. M. 1954. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38: 225–243. CASPubMedWeb of Science®Google Scholar 6 Barton, T. C. & D. A. J. Brown. 1964. Water permeability of the fetal erythrocyte. J. Gen. Physiol. 47: 839–849. 10.1085/jgp.47.5.839 CASPubMedWeb of Science®Google Scholar 7 Solomon, A. K. 1968. Characterization of biological membranes by eqivalent pores. J. Gen. Physiol. 51: 335s–364s. CASPubMedWeb of Science®Google Scholar 8 Vieira, F. L., R. I. Sha'afi & A. K. Solomon. 1970. The state of water in human and dog red cell membranes. J. Gen. Physiol. 55: 451–466. 10.1085/jgp.55.4.451 CASPubMedWeb of Science®Google Scholar 9 Wang, J. H. 1951. Self-diffusion and structure of liquid water. J. Am. Chem. Soc. 73: 510–513. 10.1021/ja01146a002 CASWeb of Science®Google Scholar 10 Solomon, A. K. 1972. Properties of water in red cell and synthetic membranes. In Passive Permeability of Cell Membranes, Biomembranes Vol. 3. F. Kreuzer & J. F. G. Slegers, Ed.: 299–330. Plenum Press. New York . 10.1007/978-1-4684-0961-1_21 Google Scholar 11 Mueller, P., D. O. Rudin, H. T. Tien & W. C. Wescott. 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 194: 979–980. 10.1038/194979a0 CASPubMedWeb of Science®Google Scholar 12 Cass, A. & A. Finkelstein. 1967. Water permeability of thin lipid membranes. J. Gen. Physiol. 50: 1765–1784. 10.1085/jgp.50.6.1765 CASPubMedWeb of Science®Google Scholar 13 Holz, R. & A. Finkelstein. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 56: 125–145. 10.1085/jgp.56.1.125 CASPubMedWeb of Science®Google Scholar 14 Solomon, A. K. & C. M. Gary-Bobo. 1972. Aqueous pores in lipid bilayers and red cell membranes. Biochim. Biophys. Acta 255: 1019–1021. 10.1016/0005-2736(72)90416-6 CASPubMedWeb of Science®Google Scholar 15 DeKruijff, B. & R. A. Demel. 1974. Polyene antibiotic sterol interactions in membranes of Acholeplasma laidlawwii cells and lecithin liposomes. Biochim Biophys. Acta 339: 57–70. 10.1016/0005-2736(74)90332-0 CASPubMedWeb of Science®Google Scholar 16 Macey, R. I. & R. E. L. Farmer. 1970. Inhibition of water and solute permeability in human red cells. Biochim. Biophys. Acta 211: 104–106. 10.1016/0005-2736(70)90130-6 CASPubMedWeb of Science®Google Scholar 17 Macey, R. I., D. M. Karan & R. E. L. Farmer. 1972. Properties of water channels in human red cells. In Passive Permeability of Cell Membranes, Biomembranes, Vol. 3. F. Kreuzer & J. F. G. Slegers, Eds.: 331–340. Plenum Press. New York . 10.1007/978-1-4684-0961-1_22 Google Scholar 18 Brown, P. A., M. B. Feinstein & R. I. Sha'afi. 1975. Membrane proteins related to water transport in human erythrocytes. Nature 254: 523–525. 10.1038/254523a0 CASPubMedWeb of Science®Google Scholar 19 Naccache, P. & R. I. Sha'afi. 1974. Effect of pCMBS on water transfer across biological membranes. J. Cell Physiol. 84: 449–456. 10.1002/jcp.1040830316 Web of Science®Google Scholar 20 Sha'afi, R. I. & M. B. Feinstein. 1977. Membrane water channels and SH-groups. In Advances in Experimental Medicine and Biology. M. W. Miller, A. E. Shamoo & J. S. Brand, Eds. 84: 67–80. Plenum Press. New York . Google Scholar 21 Fairbanks, G., T. L. Steck & D. F. H. Wallach. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10: 2606–2617. 10.1021/bi00789a030 CASPubMedWeb of Science®Google Scholar 22 Cabantchik, Z. I., P. A. Knauf & A. Rothstein. 1978. The anion transport system of the red blood cell. Biochim. Biophys. Acta 515: 239–302. 10.1016/0304-4157(78)90016-3 CASPubMedWeb of Science®Google Scholar 23 Pinto da Silva, P. 1973. Membrane intercalated particles in human erythrocyte ghosts: Sites of preferred passage of water molecules at low temperature. Proc. Natl. Acad. Sci. USA 70: 1339–1343. 10.1073/pnas.70.5.1339 PubMedWeb of Science®Google Scholar 24 Pinto da Silva, P. & G. L. Nicolson. 1974. Freeze-etch localization of concanavalin a receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim. Biophys. Acta 363: 311–319. 10.1016/0005-2736(74)90071-6 CASPubMedWeb of Science®Google Scholar 25 Knauf, P. A. 1979. Erythrocyte anion exchange and the band 3 protein: Transport kinetics and molecular structure. In Current Topics in Membranes and Transport. F. Bronner & A. Kleinzeller, Eds. 12: 249–363. Academic Press. New York . Google Scholar 26 Guidotti, G. 1972. The composition of biological membranes. Arch. Intern. Med. 129: 194–201. 10.1001/archinte.1972.00320020038003 CASPubMedWeb of Science®Google Scholar 27 Rao, A. 1979. Disposition of the band 3 polypeptide in the human erythrocyte membrane. J. Biol. Chem. 254: 3503–3511. CASPubMedWeb of Science®Google Scholar 28 Conlon, T. & R. Outhred. 1978. The temperature dependence of erythrocyte water diffusion permeability. Biochim. Biophys. Acta 511: 408–418. 10.1016/0005-2736(78)90277-8 CASPubMedWeb of Science®Google Scholar 29 Fabry, M. E. & M. Eisenstadt. 1975. Water exchange between red cells and plasma. Biophys. J. 15: 1101–1110. 10.1016/S0006-3495(75)85886-3 CASPubMedWeb of Science®Google Scholar 30 Morariu, V. V., V. I. Pop, O. Popescu & G. Benga. 1981. Effects of temperature and pH on the water exchange through erythrocyte membranes: nuclear magnetic resonance studies. J. Membr. Biol. 62: 1–5. 10.1007/BF01870194 CASPubMedWeb of Science®Google Scholar 31 Shporer, M. & M. M. Civan. 1975. NMR study of 17O from H217O in human erythrocytes. Biochim. Biophys. Acta 385: 81–87. 10.1016/0304-4165(75)90076-8 CASPubMedWeb of Science®Google Scholar 32 Brahm, J. 1982. Diffusional water permeability of human erythrocytes and their ghosts. J. Gen. Physiol. 79: 791–819. 10.1085/jgp.79.5.791 CASPubMedWeb of Science®Google Scholar 33 Jay, A. W. L. 1975. Geometry of the human erythrocyte. Biophys. J. 15: 205–222. 10.1016/S0006-3495(75)85812-7 CASPubMedWeb of Science®Google Scholar 34 Canham, P. B. & A. C. Burton. 1968. Distribution of size and shape in populations of normal human red cells. Circ. Res. 22: 405–422. 10.1161/01.RES.22.3.405 CASPubMedWeb of Science®Google Scholar 35 Steck, T. L. 1974. The organization of proteins in the human red blood cell membrane. J. Cell Biol. 62: 1–19. 10.1083/jcb.62.1.1 CASPubMedWeb of Science®Google Scholar 36 Marchesi, V. T. 1979. Functional proteins of the human red blood cell membrane. Semin. Hematol. 16: 3–20. CASPubMedWeb of Science®Google Scholar 37 Jones, M. N. & J. K. Nickson. 1981. Monosaccharide transport proteins of the human erythrocyte membrane. Biochim. Biophys. Acta 650: 1–20. 10.1016/0304-4157(81)90006-X CASPubMedWeb of Science®Google Scholar 38 Baldwin, S. A., J. M. Baldwin & G. E. Lienhard. 1982. Monosaccharide transporter of the human erythrocyte. Characterization of an improved preparation. Biochemistry 21: 3836–3842. CASPubMedWeb of Science®Google Scholar 39 Engelman, D. M. 1969. Surface area per lipid molecule in the intact membrane of the human red cell. Nature 223: 1279–1280. 10.1038/2231279a0 CASPubMedWeb of Science®Google Scholar 40 Fettiplace, R. 1978. The influence of the lipid on the water permeability of artificial membranes. Biochim. Biophys. Acta 513: 1–10. 10.1016/0005-2736(78)90106-2 CASPubMedWeb of Science®Google Scholar 41 Finkelstein, A. 1976. Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68: 127–135. 10.1085/jgp.68.2.127 CASPubMedWeb of Science®Google Scholar 42 Dix, J. A. & A. K. Solomon. 1981. Permeability of red cell lipids to water. Biophys. J. 33: 46a. Google Scholar 43 Longuet-Higgins, H. C. & G. Austin. 1966. The kinetics of osmotic transport through pores of molecular dimensions. Biophys. J. 6: 217–224. 10.1016/S0006-3495(66)86652-3 CASPubMedWeb of Science®Google Scholar 44 Chien, D. Y. & R. I. Macey. 1977. Diffusional water permeability of red cells. Biochim. Biophys. Acta 464: 45–52. 10.1016/0005-2736(77)90369-8 CASPubMedWeb of Science®Google Scholar 45 Haran, N. & M. Shporer. 1976. Study of water permeability through phospholipid vesicle membranes by 17O NMR. Biochim. Biophys. Acta 426: 638–646. 10.1016/0005-2736(76)90128-0 CASPubMedWeb of Science®Google Scholar 46 Gary-Bobo, C. M. & A. K. Solomon. 1971. Effect of geometrical and chemical constraints on water flux across artificial membranes. J. Gen. Physiol. 57: 610–622. 10.1085/jgp.57.5.610 CASPubMedWeb of Science®Google Scholar 47 Chasan, B. & A. K. Solomon. 1979. The reflection coefficient of urea in the human red cell: Effect of pCMBS. The Physiologist 22: 19. Google Scholar 48 Poznansky, M., S. Tong, P. C. White, J. M. Milgram & A. K. Solomon. 1976. Non-electrolyte diffusion across lipid bilayer systems. J. Gen. Physiol. 67: 45–66. 10.1085/jgp.67.1.45 CASPubMedWeb of Science®Google Scholar 49 Gallucci, E., S. Micelli & C. Lippe. 1975. Effect of cholesterol on the nonelectrolyte permeability of planar lecithin membranes. Nature 255: 722–723. 10.1038/255722a0 CASPubMedWeb of Science®Google Scholar 50 Rao, A. & R. A. F. Reithmeier. 1979. Reactive sulfhydryl groups of the band 3 polypeptide from human erythrocyte membranes. Location in the primary structure. J. Biol. Chem. 254: 6144–6150. CASPubMedWeb of Science®Google Scholar 51 Knauf, P. A. & A. Rothstein. 1971. Chemical modification of membranes. II. Permeation paths for sulfhydryl agents. J. Gen. Physiol. 58: 211–223. 10.1085/jgp.58.2.211 CASPubMedWeb of Science®Google Scholar 52 Rao, A. 1978. The reactive sulfhydryl groups of the band 3 polypeptide of the human erythrocyte membrane. Ph.D. Thesis. Harvard University. Cambridge, Mass. Google Scholar 53 Steck, T. L., J. J. Koziarz, M. K. Singh, G. Reddy & H. Kohler. 1978. Preparation and analysis of seven major, topographically defined fragments of band 3, the predominant transmembrane polypeptide of human erythrocyte membranes. Biochemistry 17: 1216–1222. 10.1021/bi00600a013 CASPubMedWeb of Science®Google Scholar 54 Ramjeesingh, M., A. Gaarn & A. Rothstein. 1980. The location of a disulfonic stilbene binding site in band 3, the anion transport protein of the red blood cell membrane. Biochim. Biophys. Acta 599: 127–139. 10.1016/0005-2736(80)90062-0 CASPubMedWeb of Science®Google Scholar 55 Jennings, M. L. & H. Passow. 1979. Anion transport across the erythrocyte membrane, in situ proteolysis of band 3 protein, and cross-linking of proteolytic fragments by H2DIDS. Biochim. Biophys. Acta 554: 498–519. 10.1016/0005-2736(79)90387-0 CASPubMedWeb of Science®Google Scholar 56 Jennings, M. L. & M. F. Adams. 1981. Modification by papain of the structure and function of band 3, the erythrocyte anion transport protein. Biochemistry 20: 7118–7123. 10.1021/bi00528a011 CASPubMedWeb of Science®Google Scholar 57 Rothstein, A. & M. Ramjeesingh. 1982. The red cell band 3 protein: its role in anion transport. Proc. R. Soc. London Ser. B 299: 497–507. 10.1098/rstb.1982.0147 CASPubMedWeb of Science®Google Scholar 58 DuPre, A. M. & A. Rothstein. 1981. Inhibition of anion transport associated with chymotryptic cleavages of red cell band 3 protein. Biochim. Biophys. Acta 646: 471–478. 10.1016/0005-2736(81)90317-5 CASPubMedWeb of Science®Google Scholar 59 Ramjeesingh, M., A. Gaarn & A. Rothstein. 1981. The sulfhydryl groups of the 35,000-dalton C-terminal segment of band 3 are located in a 9000-dalton fragment produced by chymotrypsin treatment of red cell ghosts. J. Bioenerg. Biomemb. 13: 411–423. 10.1007/BF00743213 CASPubMedWeb of Science®Google Scholar 60 Vansteveninck, J., R. I. Weed & A. Rothstein. 1965. Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport. J. Gen. Physiol. 48: 617–632. 10.1085/jgp.48.4.617 CASPubMedWeb of Science®Google Scholar 61 Batt, E. R., R. E. Abbott & D. Schachter. 1976. Impermeant maleimides. Identification of an exofacial component of the human erythrocyte hexose transport mechanism. J. Biol. Chem. 251: 7184–7190. CASPubMedWeb of Science®Google Scholar 62 Kleinfeld, A. M., M. F. Lukacovic, E. D. Matayoshi & P. Holloway. 1982. Conformation of membrane proteins determined from the spatial distribution of tryptophan. Biophys. J. 37: 146a. Google Scholar 63 Lukacovic, M. F., A. S. Verkman, J. A. Dix, M. Tinklepaugh & A. K. Solomon. 1982. p-Chloromercuribenzene sulfonate (pCMBS) interaction with band 3 in red cell membranes. Biophys. J. 37: 215a. Google Scholar 64 Lukacovic, M. F., M. B. Feinstein, R. I. Sha'afi & S. Perrie. 1981. Purification of stabilized band 3 protein of the human erythrocyte membrane and its reconstitution into liposomes. Biochemistry 20: 3145–3151. 10.1021/bi00514a025 CASPubMedWeb of Science®Google Scholar 65 Rao, A., P. Martin, R. A. F. Reithmeier & L. C. Cantley. 1979. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer. Biochemistry 18: 4505–4516. 10.1021/bi00588a008 CASPubMedWeb of Science®Google Scholar 66 Dix, J. A., A. S. Verkman, A. K. Solomon & L. C. Cantley. 1979. Human erythrocyte anion exchange site characterized using a fluorescent probe. Nature 282: 520–522. 10.1038/282520a0 CASPubMedWeb of Science®Google Scholar 67 Verkman, A. S., J. A. Dix & A. K. Solomon. 1983. Anion transport inhibitor binding to band 3 in red blood cell membranes. J. Gen. Physiol. 81: 421–449. 10.1085/jgp.81.3.421 CASPubMedWeb of Science®Google Scholar 68 Kleinfeld, A. M., E. D. Matayoshi & A. K. Solomon. 1980. Energy transfer determination of the tryptophan distribution of band 3: a new approach to the study of membrane protein function. J. Supramol. Struct. Suppl. 4: 68. Google Scholar 69 Snow, J. W., J. F. Brandts & P. S. Low. 1978. The effects of anion transport inhibitors on structural transitions in erythrocyte membranes. Biochim. Biophys. Acta 512: 579–591. 10.1016/0005-2736(78)90167-0 CASPubMedWeb of Science®Google Scholar 70 Deuticke, B. 1977. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev. Physiol. Biochem. Pharmacol. 78: 1–97. 10.1007/BFb0027721 CASPubMedWeb of Science®Google Scholar 71 Passow, H., L. Kampmann, H. Fasold, M. Jennings & S. Lepke. 1980. Mediation of anion transport across the red blood cell membrane by means of conformational changes of the band 3 protein. In Membrane Transport in Erythrocytes, A. Benzon Symposium 14. U. V. Lassen, H. H. Ussing & J. O. Wieth, Eds.: 345–372. Munksgaard, Copenhagen . Google Scholar 72 Passow, H., H. Fasold, E. M. Gartner, B. Legrum, W. Ruffing & L. Zaki. 1980. Anion transport across the red blood cell membrane and the conformation of the protein in band 3. Ann. N.Y. Acad. Sci. 341: 361–383. 10.1111/j.1749-6632.1980.tb47184.x CASPubMedGoogle Scholar 73 Macara, I. G. & L. C. Cantley. 1981. Mechanism of anion exchange across the red cell membrane by band 3: interactions between stilbene disulfonate and NAP-taurine binding sites. Biochemistry 20: 5695–5701. 10.1021/bi00523a009 CASPubMedWeb of Science®Google Scholar 74 Gunn, R. B. & O. Fröhlich. 1979. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. J. Gen. Physiol. 74: 351–374. 10.1085/jgp.74.3.351 CASPubMedWeb of Science®Google Scholar 75 Fröhlich, O. 1982. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride. J. Membr. Biol. 65: 111–123. 10.1007/BF01870474 CASPubMedWeb of Science®Google Scholar 76 Jennings, M. L. 1982. Stoichiometry of a half-turnover of band 3, the chloride transport protein of human erythrocytes. J. Gen. Physiol. 79: 169–185. 10.1085/jgp.79.2.169 CASPubMedWeb of Science®Google Scholar 77 Clementi, E., R. Barsotti, J. Fromm & R. O. Watts. 1976. Study of the structure of molecular complexes. XIV. Coordination numbers for selected ion pairs in water. Theoret. Chim. Acta (Berl.) 43: 101–120. CASWeb of Science®Google Scholar 78 Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells. J. Gen. Physiol. 70: 283–306. 10.1085/jgp.70.3.283 CASPubMedWeb of Science®Google Scholar 79 Robinson, R. A. & R. H. Stokes. 1955. In Electrolyte Solutions, p. 494. Academic Press. New York . Web of Science®Google Scholar 80 Lepke, S., H. Fasold, M. Pring & H. Passow. 1976. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of DIDS and its dihydro derivative H2DIDS. J. Membr. Biol. 29: 147–177. 10.1007/BF01868957 CASPubMedWeb of Science®Google Scholar 81 Dalmark, M. & J. O. Wieth. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells. J. Physiol. 224: 583–610. 10.1113/jphysiol.1972.sp009914 CASPubMedWeb of Science®Google Scholar 82 Aubert, L. & R. Motais. 1975. Molecular features of organic anion permeability in ox red blood cell. J. Physiol. 246: 159–179. 10.1113/jphysiol.1975.sp010884 CASPubMedWeb of Science®Google Scholar 83 Giebel, O. & H. Passow. 1960. Die Permeabilität der Erythrocytenmembran für organische Anionen. Pflügers Archiv 271: 378–388. 10.1007/BF00362917 CASPubMedWeb of Science®Google Scholar 84 Sutherland, R. M., A. Rothstein & R. I. Weed. 1967. Erythrocyte membrane sulfhydryl groups and action permeability. J. Cell. Physiol. 69: 185–198. 10.1002/jcp.1040690209 CASPubMedWeb of Science®Google Scholar 85 Rega, A. F., A. Rothstein & R. I. Weed. 1967. Erythrocyte membrane sulfhydryl groups and the active transport of cations. J. Cell. Physiol. 70: 45–52. 10.1002/jcp.1040700107 CASPubMedWeb of Science®Google Scholar 86 Grinstein, S. & A. Rothstein. 1978. Chemically-induced cation permeability in red cell membrane vesicles. Biochim. Biophys. Acta 508: 236–245. 10.1016/0005-2736(78)90327-9 CASPubMedWeb of Science®Google Scholar 87 Solomon, A. K., B. Chasan, J. A. Dix, M. F. Lukacovic, M. R. Toon & A. S. Verkman. 1982. The aqueous pore in the red cell membrane: band 3 as a channel for anions, cations, nonelectrolytes and water. Biophys. J. 37: 215a. Google Scholar 88 Hille, B. 1975. Ionic selectivity of Na and K channels of nerve membranes. In Membranes: A Series of Advances. G. Eisenman, Ed. 3: 255–323. Marcel Dekker. New York . Google Scholar 89 Läuger, P. & B. Neumcke. 1973. Theoretical analysis of ion conductance in lipid bilayer membranes. In Membranes. G. Eisenman, Ed. 2: 1–59. Marcel Dekker. New York . Google Scholar 90 Mayrand, R. & D. G. Levitt. 1980. Facilitated transport of urea in red cells: saturation kinetics, competitive inhibition by analogs, and asymmetry. Fed. Proc. 39: 957. Web of Science®Google Scholar 91 Wieth, J. O., J. Funder, R. B. Gunn & J. Brahm. 1974. Passive transport pathways for chloride and urea through the red cell membrane. In Comparative Biochemistry and Physiology of Transport. L. Bolis, K. Bloch, S. E. Luria & F. Lynen, Eds.: 317–337. North-Holland Publishing. Amsterdam . Google Scholar 92 Solomon, A. K. & B. Chasan. 1980. Thiourea inhibition of urea permeation into human red cells. Fed. Proc. 39: 957. Web of Science®Google Scholar 93 Brahm, J. & J. O. Wieth. 1977. Separate pathways for urea and water, and for chloride in chicken erythrocytes. J. Phyiol. 266: 727–749. 10.1113/jphysiol.1977.sp011790 CASPubMedWeb of Science®Google Scholar 94 Collander, R. 1949. Die Verteilung organischer Verbindungen zwischen Äther und Wasser. Acta Chem. Scandinavica 3: 717–747. 10.3891/acta.chem.scand.03-0717 CASWeb of Science®Google Scholar 95 Owen, J. D. & A. K. Solomon. 1972. Control of nonelectrolyte permeability in red cells. Biochim. Biophys. Acta 290: 414–418. 10.1016/0005-2736(72)90087-9 CASPubMedWeb of Science®Google Scholar 96 Owen, J. D., M. Steggall & E. M. Eyring. 1974. The effect of phloretin on red cell nonelectrolyte permeability. J. Membr. Biol. 19: 79–92. 10.1007/BF01869971 CASPubMedWeb of Science®Google Scholar 97 Jennings, M. L. & A. K. Solomon. 1976. Interaction between phloretin and the red blood cell membrane. J. Gen. Physiol. 67: 381–397. 10.1085/jgp.67.4.381 CASPubMedWeb of Science®Google Scholar 98 Forman, S. A., A. S. Verkman, J. A. Dix & A. K. Solomon. 1982. Effect of lipid perturbants on red cell band 3 conformational states. Biophys. J. 37: 216a. Google Scholar 99 Seeman, P. 1972. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev. 24: 583–655. CASPubMedWeb of Science®Google Scholar 100 Guidotti, G. 1977. The structure of intrinsic membrane proteins. J. Supramol. Struct. 7: 489–497. 10.1002/jss.400070318 CASPubMedWeb of Science®Google Scholar 101 Engelman, D. M. & T. A. Steitz. 1981. The spontaneous insertion of proteins into and across membranes: The helical hairpin hypothesis. Cell 23: 411–422. 10.1016/0092-8674(81)90136-7 CASPubMedWeb of Science®Google Scholar 102 Enoelman, D. M., R. Henderson, A. D. McLachlan & B. A. Wallace. 1980. Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77: 2023–2027. 10.1073/pnas.77.4.2023 PubMedWeb of Science®Google Scholar 103 Ramjeesingh, M., S. Grinstein & A. Rothstein. 1980. Intrinsic segments of band 3 that are associated with anion transport across red blood cell membranes. J. Membr. Biol. 57: 95–102. 10.1007/BF01868996 CASPubMedWeb of Science®Google Scholar 104 Sha'afi, R. I., C. M. Gary-Bobo & A. K. Solomon. 1971. Permeability of red cell membranes to small hydrophilic and lipophilic solutes. J. Gen. Physiol. 58: 238–258. 10.1085/jgp.58.3.238 CASPubMedWeb of Science®Google Scholar 105 Savitz, D., V. W. Sidel & A. K. Solomon. 1964. Osmotic properties of human red cells. J. Gen. Physiol. 48: 79–94. 10.1085/jgp.48.1.79 CASPubMedWeb of Science®Google Scholar 106 Morgan, J. & B. E. Warren. 1938. X-ray analysis of the structure of water. J. Chem. Phys. 6: 666–673. 10.1063/1.1750148 CASWeb of Science®Google Scholar 107 Dodge, J. T., C. Mitchell & D. J. Hanahan. 1963. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100: 119–130. 10.1016/0003-9861(63)90042-0 CASPubMedWeb of Science®Google Scholar 108 Poznansky, M. & A. K. Solomon. 1972. Regulation of human red cell volume by linked cation fluxes. J. Membr. Biol. 10: 259–266. 10.1007/BF01867859 PubMedWeb of Science®Google Scholar 109 Verkman, A. S. & J. A. Dix. 1981. Theoretical interpretation of the kinetics of complex biological systems: Some useful numerical approximations. Biophys. J. 33: 188a. Google Scholar 110 Sha'afi, R. I., G. T. Rich., D. C. Mikulecky & A. K. Solomon. 1970. Determination of urea permeability in red cells by minimum method. J. Gen. Physiol. 55: 427–450. 10.1085/jgp.55.4.427 CASPubMedWeb of Science®Google Scholar Citing Literature Volume414, Issue1Biomembranes and Cell FunctionDecember 1983Pages 97-124 ReferencesRelatedInformation
Referência(s)