Artigo Revisado por pares

Four-Point and Asymptotic Boundary Value Problems Via a Possible Modification of Poincaré's Mapping

1990; Wiley; Volume: 149; Issue: 1 Linguagem: Inglês

10.1002/mana.19901490112

ISSN

1522-2616

Autores

Ján Andres,

Tópico(s)

Differential Equations and Numerical Methods

Resumo

Mathematische NachrichtenVolume 149, Issue 1 p. 155-162 Article Four-Point and Asymptotic Boundary Value Problems Via a Possible Modification of Poincaré's Mapping J. Andres, J. Andres Department of Mathematical Analysis Faculty of Science Palach University 771 46 Olomouc Videňská 15 CzechoslovakiaSearch for more papers by this author J. Andres, J. Andres Department of Mathematical Analysis Faculty of Science Palach University 771 46 Olomouc Videňská 15 CzechoslovakiaSearch for more papers by this author First published: 1990 https://doi.org/10.1002/mana.19901490112Citations: 3AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 J. Andres, On a possible modification of Levinson's operator. Proceedings of ICNO XI, Budapest 1987, 345–348 2 J. Andres, A four-point boundary value problem for the second-order ordinary differential equations. Arch. der Math. (Basel) 53 (1989) 384–389 3 J. Andres, A useful proposition to nonlinear differential systems with a solution of the prescribed asymptotic properties. Acta UPO 85 Math. 25 (1986) 157–164 4 J. Andres, Boundedness results of solutions to the equation without the hypothesis Atti Accad. Naz. Lincei 80, 7–12 (1986) 533–539 5 E. A. Coddington, and N. Levinson, Theory of ordinary differential equation. McGraw-Hill, New York–Toronto–London 1955 6 M. A. Krasnosel'skii, Translation operator along the trajectories of differential equations. Nauka, Moscow 1966 (in Russian) 7 J. Mawhin, Topological degree methods in nonlinear boundary value problems. CBMS Reg. Conf. Ser. Math. No. 40, AMS, Providence 1979 8 J. Mawhin, and C. Muñoz, Application du degré topologique à l'estimation du nombre des solutions périodiques d'équations differentielles —I. Solutions périodiques quelconques. Ann. Mat. Pura Appl. 4 (1973) 1–19 9 H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Gauthiers-Villars, Paris 1892–1899 10 R. Reissig, Phasenraum-Methoden zum Studium nichtlinearer Differentialgleichungen. Über. Deutsch. Math.-Verein 75 (1974) 83–89 11 J. Voráček, D'-divergente Lösungen der Differentialgleichung Acta UPO 41 (1973) 83–89 12 T. Yoshizawa, Stability theory by Liapunov's second method. Math. Soc. Japan, Tokyo 1966 Citing Literature Volume149, Issue11990Pages 155-162 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX