Artigo Revisado por pares

The Locality Problem in Stochastic Mechanics

1986; Wiley; Volume: 480; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1986.tb12456.x

ISSN

1749-6632

Autores

Edward Nelson,

Tópico(s)

Advanced Thermodynamics and Statistical Mechanics

Resumo

Annals of the New York Academy of SciencesVolume 480, Issue 1 p. 533-538 The Locality Problem in Stochastic Mechanics EDWARD NELSON, EDWARD NELSON Department of Mathematics Princeton University Princeton, New Jersey 08544Search for more papers by this author EDWARD NELSON, EDWARD NELSON Department of Mathematics Princeton University Princeton, New Jersey 08544Search for more papers by this author First published: December 1986 https://doi.org/10.1111/j.1749-6632.1986.tb12456.xCitations: 6AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Bell, J. S. 1964. On the Einstein-Podolsky-Rosen paradox. Physics 1: 195–200. 10.1103/PhysicsPhysiqueFizika.1.195 Google Scholar 2 Bell, J. S. 1975. The theory of local beables. CERN preprint no. TH-2053. Reproduced in Epistem. Lett. (Association Ferd: Gonseth, CP1081, CH-205, Bienne) 9(11). Web of Science®Google Scholar 3 Aspect, A., J Dalibard & G. Roger. 1982. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49: 1804–1807. 10.1103/PhysRevLett.49.1804 Web of Science®Google Scholar 4 Nelson, E. 1985. Field theory and the future of stochastic mechanics. In Stochastic Processes in Classical and Quantum Systems. Proc. First Int. Ascona-Como Meeting, Subm. Lect. Notes Phys. S. Albeverio, G. Casati & D. Merlini, Eds. Springer-Verlag. Berlin . Google Scholar 5 Nelson, E. 1985. Quantum Fluctuations. Princeton Univ. Press. Princeton , New Jersey . 10.1515/9780691218021 Google Scholar 6 Carlen, E. 1985. The pathwise description of quantum scattering in stochastic mechanics. In Stochastic Processes in Classical and Quantum Systems. Proc. First Int. Ascona-Como Meeting, Subm. Lect. Notes Phys. S. Albeverio, G. Casati & D. Merlini, Eds. Springer-Verlag. Berlin . Google Scholar 7 Carlen, E. 1985. Potential scattering in stochastic mechanics. Ann. Inst. Henri Poincaré (Phys. Series) 42: 407–428. Web of Science®Google Scholar 8 Carlen, E. 1985. Existence and sample path properties of the diffusions in Nelson's stochastic mechanics. Proc. BiBoS. I Conf., Springer Lecture Notes. To appear. Google Scholar 9 Guerra, F. & P. Ruggiero. 1973. A new interpretation of the Euclidean-Markov field in the framework of physical Minkowski space-time. Phys. Rev. Lett. 31: 1022–1025. 10.1103/PhysRevLett.31.1022 Web of Science®Google Scholar 10 Guerra, F. & M. I. Loffredo. 1980. Stochastic equations for the Maxwell field. Lett. Nuovo Cimento 27: 41–45. 10.1007/BF02750292 Web of Science®Google Scholar 11 Davidson, M. 1982. Stochastic quantization of the linearized gravitational field. J. Math. Phys. 23: 132–137. 10.1063/1.525199 Web of Science®Google Scholar 12 DeSiena, S., F. Guerra & P. Ruggiero. 1983. Stochastic quantization of the vector meson field. Phys. Rev. D27: 2912–2915. Google Scholar 13 Guerra, F. & M. I. Loffredo. 1981. Thermal mixtures in stochastic mechanics. Lett. Nuovo Cimento 30: 81–87. 10.1007/BF02817316 Web of Science®Google Scholar 14 Glimm, J. & A. Jaffe. 1981. Quantum Physics: A Functional Integral Point of View. Springer-Verlag. New York . 10.1007/978-1-4684-0121-9 Google Scholar 15 Jona-Lasinio, G., F. Martinelli & E. Scoppola. 1981. The semiclassical limit of quantum mechanics: a qualitative theory via stochastic mechanics. Phys. Rep. 77: 313–327. 10.1016/0370-1573(81)90079-X Web of Science®Google Scholar 16 Jona-Lasinio, G., F. Martinelli & E. Scoppola. 1981. New approach to the semiclassical limit of quantum mechanics I—Multiple tunnelings in one dimension. Commun. Math. Phys. 80: 223–254. 10.1007/BF01213012 Web of Science®Google Scholar 17 Jona-Lasimio, G., F. Martinelli & E. Scoppola. 1982. Decaying quantum-mechanical states: An informal discussion within stochastic mechanics. Lett. Nuovo Cimento 34: 13–17. 10.1007/BF02817143 Web of Science®Google Scholar 18 Ruggiero, P. & M. Zannetti. 1985. Stochastic quantization at finite temperature. Riv. Nuovo Cimento 8. CASWeb of Science®Google Scholar Citing Literature Volume480, Issue1New Techniques and Ideas in Quantum Measurement TheoryDecember 1986Pages 533-538 ReferencesRelatedInformation

Referência(s)