Lake-type controls on petroleum source rock potential in nonmarine basins
2001; American Association of Petroleum Geologists; Volume: 85; Linguagem: Inglês
10.1306/8626ca5f-173b-11d7-8645000102c1865d
ISSN1558-9153
AutoresAlan R. Carroll, Kevin M. Bohacs,
Tópico(s)Geological Studies and Exploration
ResumoBased on numerous empirical observations of lacustrine basin strata, we propose a three-fold classification of lacustrine facies associations that accounts for the most important features of lacustrine petroleum source rocks and provides a predictive framework for exploration in nonmarine basins where lacustrine facies are incompletely delineated. (1) The fluvial-lacustrine facies association is characterized by freshwater lacustrine mudstones interbedded with fluvial-deltaic deposits, commonly including coal. Shoreline progradation dominates basin fill, resulting in the stacking of indistinctly expressed cycles up to 10 m thick. In map view, the deposits may be regionally widespread but laterally discontinuous and contain strong facies contrasts. Transported terrestrial organic matter contributes to mixed type I-III kerogens that generate waxy oil (type I kerogen is hydrogen rich and oil prone; type III kerogen is hydrogen poor and mainly gas prone). The Luman Tongue of the Green River Formation (Wyoming) and the Honyanchi Formation (Junggar basin, China) provide examples of this facies association, which is also present in the Songliao basin of northeastern China, the Central Sumatra basin, and the Cretaceous Doba/Doseo basins in west-central Africa. (2) The fluctuating profundal facies association represents a combination of progradational and aggradational basin fill and includes some of the world's richest source rocks. Deposits are regionally extensive in map view, having relatively homogenous source facies containing oil-prone, type I kerogen. Examples include the Laney Member of the Green River Formation (Wyoming), the Lucaogou Formation (Junggar basin, China), the Bucomazi Formation (offshore west Africa), and the Lagoa Feia Formation (Campos basin, Brazil). (3) The evaporative facies association represents dominantly aggradational fill related to desiccation cycles in saline to hypersaline lakes and may include evaporite and eolianite deposits. Sublittoral organic-rich mudstone facies are relatively thin but may be (Begin page 1034) quite rich and widespread. The highest organic enrichment coincides with the deepest lake stages. Low input of land plant organic matter results in minimal lateral contrasts in organic content. In some cases a distinctive type I-S (sulfur-rich) kerogen may generate oil at thermal maturities as low as 0.45% vitrinite reflectance equivalent. Examples include the Wilkins Peak Member of the Green River Formation (Wyoming), the Jingjingzigou Formation (Junggar basin, China), the Jianghan and Qaidam basins (China), and the Blanca Lila Formation (Argentina).
Referência(s)