Revisão Acesso aberto Revisado por pares

Dahl salt-susceptible and salt-resistant rats. A review.

1982; Lippincott Williams & Wilkins; Volume: 4; Issue: 6 Linguagem: Inglês

10.1161/01.hyp.4.6.753

ISSN

1524-4563

Autores

John P. Rapp,

Tópico(s)

Biochemical effects in animals

Resumo

HomeHypertensionVol. 4, No. 6Dahl salt-susceptible and salt-resistant rats. A review. Free AccessAbstractPDF/EPUBAboutView PDFSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessAbstractPDF/EPUBDahl salt-susceptible and salt-resistant rats. A review. J P Rapp J P RappJ P Rapp Originally published1 Nov 1982https://doi.org/10.1161/01.HYP.4.6.753Hypertension. 1982;4:753–763 eLetters(0)eLetters should relate to an article recently published in the journal and are not a forum for providing unpublished data. Comments are reviewed for appropriate use of tone and language. Comments are not peer-reviewed. Acceptable comments are posted to the journal website only. Comments are not published in an issue and are not indexed in PubMed. Comments should be no longer than 500 words and will only be posted online. References are limited to 10. Authors of the article cited in the comment will be invited to reply, as appropriate.Comments and feedback on AHA/ASA Scientific Statements and Guidelines should be directed to the AHA/ASA Manuscript Oversight Committee via its Correspondence page.Sign In to Submit a Response to This Article Previous Back to top Next FiguresReferencesRelatedDetailsCited By Power G and Padilla J (2023) (Re)modeling high-salt diet-induced hypertension in mice, American Journal of Physiology-Heart and Circulatory Physiology, 10.1152/ajpheart.00093.2023, 324:4, (H470-H472), Online publication date: 1-Apr-2023. Bhat M, Zaid M, Singh S, Gill K, Tantray J, Sharma R, Singh M, Mishra A, Singh R, Sahu S, Garg A and Sharma A (2023) A current review on animal models of anti-hypertensive drugs screening, Health Sciences Review, 10.1016/j.hsr.2023.100078, 6, (100078), Online publication date: 1-Mar-2023. Ferrari L, Rey C, Ramirez A, Dziuba A, Zickella J, Zickella M, Raff H and Taylor N (2022) Characterization of the Dahl salt-sensitive rat as a rodent model of inherited, widespread, persistent pain, Scientific Reports, 10.1038/s41598-022-24094-9, 12:1 Iwamoto T, Torimoto K, Gotoh D, Onishi S, Hori S, Morizawa Y, Nakai Y, Miyake M and Fujimoto K (2022) Reduced salt intake partially restores the circadian rhythm of bladder clock genes in Dahl salt-sensitive rats, Life Sciences, 10.1016/j.lfs.2022.120842, 306, (120842), Online publication date: 1-Oct-2022. Staruschenko A, Hodges M and Palygin O (2022) Kir5.1 channels: potential role in epilepsy and seizure disorders, American Journal of Physiology-Cell Physiology, 10.1152/ajpcell.00235.2022, 323:3, (C706-C717), Online publication date: 1-Sep-2022. Taylor E and George E (2022) Animal Models of Preeclampsia: Mechanistic Insights and Promising Therapeutics, Endocrinology, 10.1210/endocr/bqac096, 163:8, Online publication date: 1-Aug-2022. Man A, Zhou Y, Lam U, Reifenberg G, Werner A, Habermeier A, Closs E, Daiber A, Münzel T, Xia N and Li H (2022) l ‐Citrulline ameliorates pathophysiology in a rat model of superimposed preeclampsia , British Journal of Pharmacology, 10.1111/bph.15783, 179:12, (3007-3023), Online publication date: 1-Jun-2022. Ito H, Okamoto R, Ali Y, Zhe Y, Katayama K, Ito M and Dohi K (2022) Cardiorenal protective effects of sodium-glucose cotransporter 2 inhibition in combination with angiotensin II type 1 receptor blockade in salt-sensitive Dahl rats, Journal of Hypertension, 10.1097/HJH.0000000000003099, 40:5, (956-968), Online publication date: 1-May-2022. Zeng L, Liu Z, Zhou L, Chen M, Zheng X, Yang P, Zhao X and Tian Z (2021) Effects of almonds on ameliorating salt‐induced hypertension in dahl salt‐sensitive rats, Journal of the Science of Food and Agriculture, 10.1002/jsfa.11611, 102:7, (2710-2722), Online publication date: 1-May-2022. Nwia S, Li X, Leite A, Hassan R and Zhuo J (2022) The Na+/H+ Exchanger 3 in the Intestines and the Proximal Tubule of the Kidney: Localization, Physiological Function, and Key Roles in Angiotensin II-Induced Hypertension, Frontiers in Physiology, 10.3389/fphys.2022.861659, 13 Iwamoto T, Torimoto K, Gotoh D, Hori S, Nakai Y, Miyake M, Tokita Y, Kobayashi R, Aoki K and Fujimoto K (2021) The effects of choreito on a model of nocturnal polyuria using Dahl salt‐sensitive rats, LUTS: Lower Urinary Tract Symptoms, 10.1111/luts.12418, 14:2, (122-128), Online publication date: 1-Mar-2022. Wang Y, Wang M, Samuel C and Widdop R (2021) Preclinical rodent models of cardiac fibrosis, British Journal of Pharmacology, 10.1111/bph.15450, 179:5, (882-899), Online publication date: 1-Mar-2022. Miura T, Sakuyama A, Xu L, Qiu J, Namai-Takahashi A, Ogawa Y, Kohzuki M and Ito O (2021) Febuxostat ameliorates high salt intake-induced hypertension and renal damage in Dahl salt-sensitive rats, Journal of Hypertension, 10.1097/HJH.0000000000003012, 40:2, (327-337), Online publication date: 1-Feb-2022. Yang P, Zhou L, Chen M, Zeng L, Ouyang Y, Zheng X, Chen X, Yang Z and Tian Z (2022) Supplementation of amino acids and organic acids prevents the increase in blood pressure induced by high salt in Dahl salt-sensitive rats, Food & Function, 10.1039/D1FO03577K, 13:2, (891-903) Tuong Z, Stewart B, Guo S and Clatworthy M (2021) Epigenetics and tissue immunity—Translating environmental cues into functional adaptations*, Immunological Reviews, 10.1111/imr.13036, 305:1, (111-136), Online publication date: 1-Jan-2022. Liu J, Yan Y and I. Shapiro J (2021) The Na/K-ATPase Signaling Regulates Natriuresis in Renal Proximal Tubule Biomarkers and Bioanalysis Overview, 10.5772/intechopen.92968 Bier A, Khashab R, Sharabi Y, Grossman E and Leibowitz A (2021) Melatonin Prevents T Lymphocyte Infiltration to the Kidneys of Hypertensive Rats, Induced by a High-Salt Diet, by Preventing the Expression of CXCR3 Ligand Chemokines, Nutrients, 10.3390/nu13103577, 13:10, (3577) Bkaily G, Simon Y, Jazzar A, Najibeddine H, Normand A and Jacques D (2021) High Na+ Salt Diet and Remodeling of Vascular Smooth Muscle and Endothelial Cells, Biomedicines, 10.3390/biomedicines9080883, 9:8, (883) Xu L, Hu G, Qiu J, Fan Y, Ma Y, Miura T, Kohzuki M and Ito O (2021) High Fructose‐Induced Hypertension and Renal Damage Are Exaggerated in Dahl Salt‐Sensitive Rats via Renal Renin‐Angiotensin System Activation, Journal of the American Heart Association, 10:14, Online publication date: 20-Jul-2021.Razavi M, Bazzano L, Nierenberg J, Huang Z, Fernandez C, Razavi A, Whelton S, He J and Kelly T (2021) Advances in Genomics Research of Blood Pressure Responses to Dietary Sodium and Potassium Intakes, Hypertension, 78:1, (4-15), Online publication date: 1-Jul-2021. Zhuo J, Soleimani M and Li X (2021) New Insights into the Critical Importance of Intratubular Na+/H+ Exchanger 3 and Its Potential Therapeutic Implications in Hypertension, Current Hypertension Reports, 10.1007/s11906-021-01152-7, 23:6, Online publication date: 1-Jun-2021. Tian Z and Liang M (2021) Renal metabolism and hypertension, Nature Communications, 10.1038/s41467-021-21301-5, 12:1 Kawata R, Hotta Y, Maeda K, Kataoka T and Kimura K (2021) Effects of High Salt Intake on Detrusor Muscle Contraction in Dahl Salt-Sensitive Rats, Nutrients, 10.3390/nu13020539, 13:2, (539) Polina I, Spicer M, Domondon M, Schibalski R, Sarsenova E, Sultanova R and Ilatovskaya D (2021) Inhibition of neprilysin with sacubitril without RAS blockage aggravates renal disease in Dahl SS rats, Renal Failure, 10.1080/0886022X.2021.1879856, 43:1, (315-324), Online publication date: 1-Jan-2021. Puleo F, Kim K, Frame A, Walsh K, Ferdaus M, Moreira J, Comsti E, Faudoa E, Nist K, Abkin E and Wainford R (2020) Sympathetic Regulation of the NCC (Sodium Chloride Cotransporter) in Dahl Salt–Sensitive Hypertension, Hypertension, 76:5, (1461-1469), Online publication date: 1-Nov-2020. Dey A, Khedr S, Bean J, Porras L, Meredith T, Willard F, Hass J, Zhou X, Terashvili M, Jesudason C, Ruley K, Wiley M, Kowala M, Atkinson S, Staruschenko A and Rekhter M (2020) Selective Phosphodiesterase 1 Inhibitor BTTQ Reduces Blood Pressure in Spontaneously Hypertensive and Dahl Salt Sensitive Rats: Role of Peripheral Vasodilation, Frontiers in Physiology, 10.3389/fphys.2020.543727, 11 Edwards J, McCarthy C and Wenceslau C The Obligatory Role of the Acetylcholine-Induced Endothelium-Dependent Contraction in Hypertension: Can Arachidonic Acid Resolve this Inflammation?, Current Pharmaceutical Design, 10.2174/1381612826666200417150121, 26:30, (3723-3732) Man A, Chen M, Zhou Y, Wu Z, Reifenberg G, Daiber A, Münzel T, Xia N and Li H (2020) Fetal programming effects of pentaerythritol tetranitrate in a rat model of superimposed preeclampsia, Journal of Molecular Medicine, 10.1007/s00109-020-01949-0, 98:9, (1287-1299), Online publication date: 1-Sep-2020. Ogawa Y, Takahashi J, Sakuyama A, Xu L, Miura T, Muroya Y, Ito D, Kohzuki M and Ito O (2020) Exercise training delays renal disorders with decreasing oxidative stress and increasing production of 20-hydroxyeicosatetraenoic acid in Dahl salt-sensitive rats, Journal of Hypertension, 10.1097/HJH.0000000000002409, 38:7, (1336-1346), Online publication date: 1-Jul-2020. Yamakoshi S, Ito O, Rong R, Ohsaki Y, Nakamura T, Hirose T, Takahashi K, Mori T, Totsune K and Kohzuki M (2020) High Salt Intake–Increased (Pro)renin Receptor Expression Is Exaggerated in the Kidney of Dahl Salt-Sensitive Rats, Hypertension, 75:6, (1447-1454), Online publication date: 1-Jun-2020. Cowley A and Dwinell M (2020) Chromosomal Substitution Strategies to Localize Genomic Regions Related to Complex Traits Comprehensive Physiology, 10.1002/cphy.c180029, (365-388) Domondon M, Polina I, Nikiforova A, Sultanova R, Kruger C, Vasileva V, Fomin M, Beeson G, Nieminen A, Smythe N, Maldonado E, Stadler K and Ilatovskaya D (2020) Renal Glomerular Mitochondria Function in Salt-Sensitive Hypertension, Frontiers in Physiology, 10.3389/fphys.2019.01588, 10 Allen P, Dell'Italia L, Esvelt M, Conte M, Cadillac J and Myers D (2020) Cardiovascular Research The Laboratory Rat, 10.1016/B978-0-12-814338-4.00025-8, (927-965), . Hu J, Wang H, Wang L, Xu C, Cao K and Zhang X (2019) Characteristic analysis of the pathway-based weighted network of hypertension-related genes, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2019.122069, 533, (122069), Online publication date: 1-Nov-2019. Carrillo-Sepulveda M, Panackal A, Maracheril R, Maddie N, Patel M, Ojamaa K, Savinova O and Gerdes A (2019) Triiodothyronine Reduces Vascular Dysfunction Associated with Hypertension by Attenuating Protein Kinase G/Vasodilator-Stimulated Phosphoprotein Signaling, Journal of Pharmacology and Experimental Therapeutics, 10.1124/jpet.119.260471, 371:1, (88-94), Online publication date: 1-Oct-2019. Gupta M and Vadde R (2019) Identification and characterization of differentially expressed genes in Type 2 Diabetes using in silico approach, Computational Biology and Chemistry, 10.1016/j.compbiolchem.2019.01.010, 79, (24-35), Online publication date: 1-Apr-2019. Hermann D, Popa-Wagner A, Kleinschnitz C and Doeppner T (2019) Animal models of ischemic stroke and their impact on drug discovery, Expert Opinion on Drug Discovery, 10.1080/17460441.2019.1573984, 14:3, (315-326), Online publication date: 4-Mar-2019. Dutta S and Mukherjee K (2019) Multifractal approach to study of salt induced hypertension and baroreflex dysfunction in salt sensitive Dahl rats, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2018.09.105, 515, (526-536), Online publication date: 1-Feb-2019. Tayler H, Palmer J, Thomas T, Kehoe P, Paton J and Love S (2017) Cerebral Aβ 40 and systemic hypertension , Journal of Cerebral Blood Flow & Metabolism, 10.1177/0271678X17724930, 38:11, (1993-2005), Online publication date: 1-Nov-2018. Pai A, West C, A. de Souza A, Cheng X, West D, Ji H, Wu X, Baylis C and Sandberg K (2018) Salt-sensitive (Rapp) rats from Envigo spontaneously develop accelerated hypertension independent of ovariectomy on a low-sodium diet, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 10.1152/ajpregu.00449.2017, 315:5, (R915-R924), Online publication date: 1-Nov-2018. Mills N, Sharma K, Huang K and Teruyama R (2018) Effect of dietary salt intake on epithelial Na + channels (ENaCs) in the hypothalamus of Dahl salt-sensitive rats , Physiological Reports, 10.14814/phy2.13838, 6:16, (e13838), Online publication date: 1-Aug-2018. Velasquez Flores M, Mossa A, Cammisotto P and Campeau L (2018) Bladder overdistension with polyuria in a hypertensive rat model, Neurourology and Urodynamics, 10.1002/nau.23550, 37:6, (1904-1912), Online publication date: 1-Aug-2018. Zhou Y, Castonguay P, Sidhom E, Clark A, Dvela-Levitt M, Kim S, Sieber J, Wieder N, Jung J, Andreeva S, Reichardt J, Dubois F, Hoffmann S, Basgen J, Montesinos M, Weins A, Johnson A, Lander E, Garrett M, Hopkins C and Greka A (2017) A small-molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models, Science, 10.1126/science.aal4178, 358:6368, (1332-1336), Online publication date: 8-Dec-2017. Yamamoto S, Hotta Y, Maeda K, Kataoka T, Maeda Y, Hamakawa T, Shibata Y, Sasaki S, Ugawa S, Yasui T and Kimura K (2017) High salt loading induces urinary storage dysfunction via upregulation of epithelial sodium channel alpha in the bladder epithelium in Dahl salt-sensitive rats, Journal of Pharmacological Sciences, 10.1016/j.jphs.2017.10.001, 135:3, (121-125), Online publication date: 1-Nov-2017. Kucher A, Beresneva O, Parastaeva M, Ivanova G, Zarajsky M, Shwed N and Kayukov I (2017) High salts intake, cardiovascular system and kidney in spontaneous hypertensive rats, Regional blood circulation and microcirculation, 10.24884/1682-6655-2017-16-3-62-69, 16:3, (62-69) Palygin O, Levchenko V, Ilatovskaya D, Pavlov T, Pochynyuk O, Jacob H, Geurts A, Hodges M and Staruschenko A (2017)(2017)(2017)(2017) Essential role of Kir5.1 channels in renal salt handling and blood pressure control, JCI Insight, 10.1172/jci.insight.92331, 2:18, Online publication date: 21-Sep-2017., Online publication date: 21-Sep-2017., Online publication date: 21-Sep-2017., Online publication date: 21-Sep-2017. Pavlov T and Staruschenko A (2017) Involvement of ENaC in the development of salt-sensitive hypertension, American Journal of Physiology-Renal Physiology, 10.1152/ajprenal.00427.2016, 313:2, (F135-F140), Online publication date: 1-Aug-2017. Pavlov T, Levchenko V, Ilatovskaya D, Li H, Palygin O, Pastor-Soler N, Hallows K and Staruschenko A (2017) Lack of Effects of Metformin and AICAR Chronic Infusion on the Development of Hypertension in Dahl Salt-Sensitive Rats, Frontiers in Physiology, 10.3389/fphys.2017.00227, 8 Jo C, Kim S, Oh I, Park J and Kim G (2017) Alteration of Tight Junction Protein Expression in Dahl Salt-Sensitive Rat Kidney, Kidney and Blood Pressure Research, 10.1159/000485332, 42:6, (951-960), . Pasternak A (2017) Discovery of ROMK Inhibitor MK-7145: A Novel Mechanism Diuretic Comprehensive Medicinal Chemistry III, 10.1016/B978-0-12-409547-2.12465-5, (308-338), . Huang J and Gao P (2017) Hypertension and Stroke Translational Research in Stroke, 10.1007/978-981-10-5804-2_8, (153-167), . Sakuyama H, Katoh M, Wakabayashi H, Zulli A, Kruzliak P and Uehara Y (2016) Influence of gestational salt restriction in fetal growth and in development of diseases in adulthood, Journal of Biomedical Science, 10.1186/s12929-016-0233-8, 23:1, Online publication date: 1-Dec-2016. Szasz T and Tostes R (2016) Vascular Smooth Muscle Function in Hypertension, Colloquium Series on Integrated Systems Physiology: From Molecule to Function, 10.4199/C00129ED1V01Y201503ISP061, 8:3, (i-96), Online publication date: 20-Oct-2016. Michel M, Brunner H, Foster C and Huo Y (2016) Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease, Pharmacology & Therapeutics, 10.1016/j.pharmthera.2016.03.019, 164, (1-81), Online publication date: 1-Aug-2016. Ergul A, Hafez S, Fouda A and Fagan S (2016) Impact of Comorbidities on Acute Injury and Recovery in Preclinical Stroke Research: Focus on Hypertension and Diabetes, Translational Stroke Research, 10.1007/s12975-016-0464-8, 7:4, (248-260), Online publication date: 1-Aug-2016. Shah P, Martin R, Yan Y, Shapiro J and Liu J (2016) Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis, Frontiers in Physiology, 10.3389/fphys.2016.00256, 7 Yu H, Yang T, Gao P, Wei X, Zhang H, Xiong S, Lu Z, Li L, Wei X, Chen J, Zhao Y, Arendshorst W, Shang Q, Liu D and Zhu Z (2016) Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling, Scientific Reports, 10.1038/srep25746, 6:1 Huang B, Cheng Y, Usa K, Liu Y, Baker M, Mattson D, He Y, Wang N and Liang M (2016) Renal Tumor Necrosis Factor α Contributes to Hypertension in Dahl Salt-Sensitive Rats, Scientific Reports, 10.1038/srep21960, 6:1 Wang H, Hu J, Xu C, Zhang D, Yan Q, Xu M, Cao K and Zhang X (2016) A pathway-based network analysis of hypertension-related genes, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2015.10.048, 444, (928-939), Online publication date: 1-Feb-2016. Kalani A, Pushpakumar S, Vacek J, Tyagi S and Tyagi N (2016) Inhibition of MMP-9 attenuates hypertensive cerebrovascular dysfunction in Dahl salt-sensitive rats, Molecular and Cellular Biochemistry, 10.1007/s11010-015-2623-8, 413:1-2, (25-35), Online publication date: 1-Feb-2016. Fan F, Chen C, Zhang J, Schreck C, Roman E, Williams J, Hirata T, Sharma M, Beard D, Savin V and Roman R (2015) Fluorescence dilution technique for measurement of albumin reflection coefficient in isolated glomeruli, American Journal of Physiology-Renal Physiology, 10.1152/ajprenal.00311.2015, 309:12, (F1049-F1059), Online publication date: 15-Dec-2015. Harrap S and Morris B (2015) Blood Pressure Genetics Just Don't Add Up, Circulation: Cardiovascular Genetics, 8:4, (541-543), Online publication date: 1-Aug-2015. Gillis E, Williams J, Garrett M, Mooney J and Sasser J (2015) The Dahl salt-sensitive rat is a spontaneous model of superimposed preeclampsia, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 10.1152/ajpregu.00377.2014, 309:1, (R62-R70), Online publication date: 1-Jul-2015. Ventura N, Peterson N, Tse M, Andrew R, Pang S and Jin A (2014) Molecular adaptations in vasoactive systems during acute stroke in salt-induced hypertension, Molecular and Cellular Biochemistry, 10.1007/s11010-014-2230-0, 399:1-2, (39-47), Online publication date: 1-Jan-2015. Ge Y, Murphy S, Fan F, Williams J, Falck J, Liu R and Roman R (2014) Role of 20-HETE in the impaired myogenic and TGF responses of the Af-Art of Dahl salt-sensitive rats, American Journal of Physiology-Renal Physiology, 10.1152/ajprenal.00273.2014, 307:5, (F509-F515), Online publication date: 1-Sep-2014. Wang L, Hou E, Wang Z, Sun N, He L, Chen L, Liang M and Tian Z (2014) Analysis of metabolites in plasma reveals distinct metabolic features between Dahl salt-sensitive rats and consomic SS.13BN rats, Biochemical and Biophysical Research Communications, 10.1016/j.bbrc.2014.06.089, 450:1, (863-869), Online publication date: 1-Jul-2014. Chou R, Hara A, Du D, Shimizu N, Sakuyama H and Uehara Y (2014) Low-Salt Intake during Mating or Gestation in Rats Is Associated with Low Birth and Survival Rates of Babies, Journal of Nutrition and Metabolism, 10.1155/2014/212089, 2014, (1-5), . Wang H, Xu C, Hu J and Cao K (2014) A complex network analysis of hypertension-related genes, Physica A: Statistical Mechanics and its Applications, 10.1016/j.physa.2013.09.054, 394, (166-176), Online publication date: 1-Jan-2014. Vaněčková I, Vokurková M, Rauchová H, Dobešová Z, Pecháňová O, Kuneš J, Vorlíček J and Zicha J (2013) Chronic antioxidant therapy lowers blood pressure in adult but not in young Dahl salt hypertensive rats: the role of sympathetic nervous system, Acta Physiologica, 10.1111/apha.12092, 208:4, (340-349), Online publication date: 1-Aug-2013. Liang M, Cowley A, Mattson D, Kotchen T and Liu Y (2013) Epigenomics of Hypertension, Seminars in Nephrology, 10.1016/j.semnephrol.2013.05.011, 33:4, (392-399), Online publication date: 1-Jul-2013. Murphy S, Dahly-Vernon A, Dunn K, Chen C, Ledbetter S, Williams J and Roman R (2012) Renoprotective effects of anti-TGF-β antibody and antihypertensive therapies in Dahl S rats, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 10.1152/ajpregu.00263.2011, 303:1, (R57-R69), Online publication date: 1-Jul-2012. ZICHA J, DOBEŠOVÁ Z, VOKURKOVÁ M, RAUCHOVÁ H, HOJNÁ S, KADLECOVÁ M, BEHULIAK M, VANĚČKOVÁ I and KUNEŠ J (2012) Age-Dependent Salt Hypertension in Dahl Rats: Fifty Years of Research, Physiological Research, 10.33549/physiolres.932363, (S35-S87), Online publication date: 30-Jun-2012. Zhu Q, Wang Z, Xia M, Li P, Zhang F and Li N (2012) Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 10.1016/j.bbadis.2012.02.002, 1822:6, (936-941), Online publication date: 1-Jun-2012. Kriegel A, Liu Y, Fang Y, Ding X and Liang M (2012) The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury, Physiological Genomics, 10.1152/physiolgenomics.00141.2011, 44:4, (237-244), Online publication date: 15-Feb-2012. Luft F (2012) Rats, Salt, and History, Cell Metabolism, 10.1016/j.cmet.2012.01.007, 15:2, (129-130), Online publication date: 1-Feb-2012. Kitamura K and Tomita K (2011) Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension, Clinical and Experimental Nephrology, 10.1007/s10157-011-0506-1, 16:1, (44-48), Online publication date: 1-Feb-2012. Liu J, Kennedy D, Yan Y and Shapiro J (2012) Reactive Oxygen Species Modulation of Na/K-ATPase Regulates Fibrosis and Renal Proximal Tubular Sodium Handling, International Journal of Nephrology, 10.1155/2012/381320, 2012, (1-14), . Castaneda C and LaPointe M (2011) Gold Standard Animal Models Pharmaceutical Sciences Encyclopedia, 10.1002/9780470571224.pse437 Liu J, Yan Y, Liu L, Xie Z, Malhotra D, Joe B and Shapiro J (2011) Impairment of Na/K-ATPase Signaling in Renal Proximal Tubule Contributes to Dahl Salt-sensitive Hypertension, Journal of Biological Chemistry, 10.1074/jbc.M111.246249, 286:26, (22806-22813), Online publication date: 1-Jul-2011. Brown L, Hansen C, Huberty A and Castonguay T (2011) Traits of the metabolic syndrome alter corpulent obesity in LAN, SHR and DSS rats: Behavioral and metabolic interactions with adrenalectomy, Physiology & Behavior, 10.1016/j.physbeh.2010.12.020, 103:1, (98-103), Online publication date: 1-Apr-2011. Liu B and Ely D (2011) Testosterone Increases: Sodium Reabsorption, Blood Pressure, and Renal Pathology in Female Spontaneously Hypertensive Rats on a High Sodium Diet, Advances in Pharmacological Sciences, 10.1155/2011/817835, 2011, (1-8), . Festing M and Lutz C (2010) Laboratory Animal Genetics and Genetic Quality Control Handbook of Laboratory Animal Science, Volume I, Third Edition, 10.1201/b10416-10, (209-249), Online publication date: 2-Dec-2010. Stocker S, Madden C and Sved A (2010) Excess dietary salt intake alters the excitability of central sympathetic networks, Physiology & Behavior, 10.1016/j.physbeh.2010.04.024, 100:5, (519-524), Online publication date: 1-Jul-2010. Bugenhagen S, Cowley A and Beard D (2010) Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat, Physiological Genomics, 10.1152/physiolgenomics.00027.2010, 42:1, (23-41), Online publication date: 1-Jun-2010. Nonoshita A, Nishi Y, Takushima S, Oshima M, Hosoda H, Kangawa K, Kojima M, Mifune H, Tanaka E, Hori D and Kamura T (2010) Dynamics of placental ghrelin production and its receptor expression in a Dahl salt-sensitive rat model of intrauterine growth restriction, Placenta, 10.1016/j.placenta.2010.02.013, 31:5, (358-364), Online publication date: 1-May-2010. Liu Y, Taylor N, Lu L, Usa K, Cowley A, Ferreri N, Yeo N and Liang M (2010) Renal Medullary MicroRNAs in Dahl Salt-Sensitive Rats, Hypertension, 55:4, (974-982), Online publication date: 1-Apr-2010. Lu L, Li P, Yang C, Kurth T, Misale M, Skelton M, Moreno C, Roman R, Greene A, Jacob H, Lazar J, Liang M and Cowley A (2010) Dynamic convergence and divergence of renal genomic and biological pathways in protection from Dahl salt-sensitive hypertension, Physiological Genomics, 10.1152/physiolgenomics.00170.2009, 41:1, (63-70), Online publication date: 1-Mar-2010. Drenjancevic-Peric I, Weinberg B, Greene A and Lombard J (2010) Restoration of Cerebral Vascular Relaxation in Renin Congenic Rats by Introgression of the Dahl R Renin Gene, American Journal of Hypertension, 10.1038/ajh.2009.236, 23:3, (243-248), Online publication date: 1-Mar-2010. Yagil C and Yagil Y (2010) The Genomics of Hypertension Essentials of Genomic and Personalized Medicine, 10.1016/B978-0-12-374934-5.00022-2, (259-268), . Kerr A, Hensel M, Peterson T, Villatoro L, Nye S and Swain R (2009) Introgression of Brown Norway Chromosome 13 Improves Visual Spatial Memory in the Dahl S Rat, Behavior Genetics, 10.1007/s10519-009-9296-6, 40:1, (76-84), Online publication date: 1-Jan-2010. Bader M (2010) Rat Models of Cardiovascular Diseases Rat Genomics, 10.1007/978-1-60327-389-3_27, (403-414), . Tian Z, Liu Y, Usa K, Mladinov D, Fang Y, Ding X, Greene A, Cowley A and Liang M (2009) Novel Role of Fumarate Metabolism in Dahl-Salt Sensitive Hypertension, Hypertension, 54:2, (255-260), Online publication date: 1-Aug-2009. Kakizoe Y, Kitamura K, Ko T, Wakida N, Maekawa A, Miyoshi T, Shiraishi N, Adachi M, Zhang Z, Masilamani S and Tomita K (2009) Aberrant ENaC activation in Dahl salt-sensitive rats, Journal of Hypertension, 10.1097/HJH.0b013e32832c7d23, 27:8, (1679-1689), Online publication date: 1-Aug-2009. Taylor D and Abdel-Rahman A (2009) Novel Strategies and Targets for the Management of Hypertension Contemporary Aspects of Biomedical Research - Drug Discovery, 10.1016/S1054-3589(08)57008-6, (291-345), . Yagil C and Yagil Y (2009) The Genomics of Hypertension Genomic and Personalized Medicine, 10.1016/B978-0-12-369420-1.00054-8, (624-633), . Liu Y, Singh R, Usa K, Netzel B and Liang M (2008) Renal medullary 11β-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension, Physiological Genomics, 10.1152/physiolgenomics.90283.2008, 36:1, (52-58), Online publication date: 1-Dec-2008. Dillmann W (2008) The rat as a model for cardiovascular disease, Drug Discovery Today: Disease Models, 10.1016/j.ddmod.2009.03.006, 5:3, (173-178), Online publication date: 1-Sep-2008. Liang M, Lee N, Wang H, Greene A, Kwitek A, Kaldunski M, Luu T, Frank B, Bugenhagen S, Jacob H and Cowley A (2008) Molecular networks in Dahl salt-sensitive hypertension based on transcriptome analysis of a panel of consomic rats, Physiological Genomics, 10.1152/physiolgenomics.00031.2008, 34:1, (54-64), Online publication date: 1-Jun-2008. Diaz Encarnacion M, Warner G, Gray C, Cheng J, Keryakos H, Nath K and Grande J (2008) Signaling pathways modulated by fish oil in salt-sensitive hypertension, American Journal of Physiology-Renal Physiology, 10.1152/ajprenal.00401.2007, 294:6, (F1323-F1335), Online publication date: 1-Jun-2008. Tian Z, Greene A, Usa K, Matus I, Bauwens J, Pietrusz J, Cowley A and Liang M (2008) Renal Regional Proteomes in Young Dahl Salt-Sensitive Rats, Hypertension, 51:4, (899-904), Online publication date: 1-Apr-2008. Zheng W, Ji H, Maric C, Wu X and Sandberg K (2008) Effect of dietary sodium on estrogen regulation of blood pressure in Dahl salt-sensitive rats, American Journal of Physiology-Heart and Circulatory Physiology, 10.1152/ajpheart.01322.2007, 294:4, (H1508-H1513), Online publication date: 1-Apr-2008. Moreno C, Lazar J, Jacob H and Kwitek A (2008) Comparative Genomics for Detecting Human Disease Genes Genetic Dissection of Complex Traits, 10.1016/S0065-2660(07)00423-3, (655-697), . McBryde F, Guild S, Barrett C, Osborn J and Malpas S (2007) Angiotensin II-based hypertension and the sympathetic nervous system: the role of dose and increased dietary salt in rabbits, Experimental Physiology, 10.1113/expphysiol.2007.037473, 92:5, (831-840), Online publication date: 1-Sep-2007. Kuneš J and Zicha J (2006) Developmental windows and environment as important factors in the expression of genetic information: a cardiovascular physiologist's view, Clinical Science, 10.1042/CS20050271, 111:5, (295-305), Online publication date: 1-Nov-2006. Cowley A (2006) The genetic dissection of essential hypertension, Nature Reviews Genetics, 10.1038/nrg1967, 7:11, (829-840), Online publication date: 1-Nov-2006. Aoi W, Niisato N, Sawabe Y, Miyazaki H and Marunaka Y (2006) Aldosterone-induced abnormal regulation of ENaC and SGK1 in Dahl salt-sensitive rat, Biochemical and Biophysical Research Communications, 10.1016/j.bbrc.2005.12.194, 341:2, (376-381), Online publication date: 1-Mar-2006. Toth M, Palmer B and LeWinter M (2006) Effect of heart failure on skeletal muscle myofibrillar protein content, isoform expression and calcium sensitivity, International Journal of Cardiology, 10.1016/j.ijcard.2005.03.024, 107:2, (211-219), Online publication date: 1-Feb-2006. Ikari A, Matsumoto S, Harada H, Takagi K, Degawa M, Takahashi T, Sugatani J and Miwa M (2006) Dysfunction of Paracellin-1 by Dephosphorylation in Dahl Salt-Sensitive Hypertensive Rats, The Journal of Physiological Sciences, 10.2170/physiolsci.SC008906, 56:5, (379-383), .

Referência(s)
Altmetric
PlumX