Artigo Acesso aberto Revisado por pares

Molecular modeling of a T-cell receptor bound to a major histocompatibility complex molecule: Implications for T-cell recognition

1995; Wiley; Volume: 4; Issue: 9 Linguagem: Inglês

10.1002/pro.5560040906

ISSN

1469-896X

Autores

Juan C. Almagro, Enrique Vargas‐Madrazo, Francisco Lara‐Ochoa, E. Horjales,

Tópico(s)

Immune Cell Function and Interaction

Resumo

Protein ScienceVolume 4, Issue 9 p. 1708-1717 ArticleFree Access Molecular modeling of a T-cell receptor bound to a major histocompatibility complex molecule: Implications for T-cell recognition Juan C. Almagro, Corresponding Author Juan C. Almagro almagro@vincent.iquimica.unam.mx Institute de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.FInstituto de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.F.Search for more papers by this authorEnrique Vargas-Madrazo, Enrique Vargas-Madrazo Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, MéxicoSearch for more papers by this authorFrancisco Lara-Ochoa, Francisco Lara-Ochoa Institute de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.FSearch for more papers by this authorEduardo Horjales, Eduardo Horjales Institute de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.FSearch for more papers by this author Juan C. Almagro, Corresponding Author Juan C. Almagro almagro@vincent.iquimica.unam.mx Institute de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.FInstituto de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.F.Search for more papers by this authorEnrique Vargas-Madrazo, Enrique Vargas-Madrazo Instituto de Investigaciones Biológicas, Universidad Veracruzana, Xalapa, Veracruz, MéxicoSearch for more papers by this authorFrancisco Lara-Ochoa, Francisco Lara-Ochoa Institute de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.FSearch for more papers by this authorEduardo Horjales, Eduardo Horjales Institute de Quimica, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CP. 04510, México, D.FSearch for more papers by this author First published: September 1995 https://doi.org/10.1002/pro.5560040906Citations: 10AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onFacebookTwitterLinkedInRedditWechat Abstract The main functions of the T-cell receptor (TCR) involve its specific interaction with short and linear antigenic peptides bound to the major histocompatibility complex (MHC) molecules. In the absence of a 3D structure for TCR and for the TCR/peptide/MHC complex, several attempts to characterize the structural components of the TCR/peptide/MHC interaction have been made. However, this subject is still troublesome. In this paper a computer-based 3D model for a TCR/peptide/MHC complex (5C.C7/moth cytochrome c [MCC] peptide 93–103/I-Ek) was obtained. The complex surface shows a high complementarity between the 5C.C7 structure and the peptide/I-Ek molecule. The mapping of residues involved in the TCR/peptide/MHC interaction shows close agreement with mutational experiments (Jorgensen JL, Reay PA, Ehrich EW, Davis MM, 1992b, Annu Rev Immunol 70:835–873). Moreover, the results are consistent with a recent variability analysis of TCR sequences using three variability indexes (Almagro JC, Zenteno-Cuevas R, Vargas-Madrazo E, Lara-Ochoa F, 1995b, Int J Pept Protein Res 45:180–186). Accordingly, the 3D model of the 5C.C7/MCC peptide 93–103/I-Ek complex provides a framework to generate testable hypotheses about TCR recognition. Thus, starting from this model, the role played by each loop that forms the peptide/MHC binding site of the TCR is discussed. References Ajitkumar P, Geier SS, Kesari KV, Borriello F, Nakagawa M, Bluestonc JA, Saper MA, Wiley DC, Nathenson SG. 1988. Evidence that multiple residues on both the α-helices of the class I MHC molecule are simultaneously recognized by the T cell receptor. Cell 54: 47– 56. Almagro JC, Ceceña HA, Vargas-Madrazo E, Lara-Ochoa F. 1995a Molecular dynamics simulation of an immunoglobulin Fv fragment. 3rd International Perspectives on Protein Engineering, pp. 53– 56. Almagro JC, Zenteno-Cuevas R, Vargas-Madrazo E, Lara-Ochoa F. 1995b Variability analysis of the T-cell receptors using three variability indexes. Im J Pept Protein Res 45: 180– 186. Bhat TN, Bentley GA, Fischmann TO, Boulot G, Poljak RJ. 1990. Small rearrangements in structures of Fv and Fab fragments of antibody DI .3 on antigen binding. Nature 347: 483– 485. Bellio M, Lone YC, Calle-Martin O, Malissen B, Abastado JP, Kourilsky P. 1994. The V β complementary determining region 1 of major histocompatibility complex (MHC) class I-restricted T cell receptor is involved in the' recognition of peptide/MHC I and superantigen/MHC II complex. J Exp Med 179: 1087– 1097. Bentley GA, Boulot G, Karjalainen K, Mariuzza RA. 1995. Crystal structure of the β chain of a T cell antigen receptor. Science 267: 1984– 1987. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M. 1977. The Protein Data Bank: A computer-based archival file for macromolecular structures. J Mol Biol 112: 535– 542. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. 1993. Three-dimensional structure of the human class II histocompatibility antigen HLA-DRI. Nature 364: 33– 39. Brown JH, Jardetzky T, Saper MA, Samraoui B, Bjorkman PJ, Wiley DC. 1988. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature 332: 845– 850. Chothia C, Boswell DR, Lesk AM. 1988. The outline structure of the T-cell α:β receptor. EMBO J 7: 3745– 3755. Chothia C, Lesk AM. 1987. Canonical structures for the hypervariable regions of immunoglobulin. J Mol Biol 196: 901– 917. Chothia C, Lesk AM, Gherardi E, Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. 1992. Structural repertoire of the human VH segments. J Mol Biol 227: 799– 817. Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill SJ, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, Colman PM, Spinelli S, Alzari PM, Poljak RJ. 1989. Conformations of immunoglobulin hypervariable regions. Nature (Lond) 342: 877– 883. Claverie JM, Prochnicka-Chalufour A, Bougueleret L. 1989. Implications of a Fab-like structure for T-cell receptor. Immunol Today 10: 10– 14. Connolly ML. 1983. Solvent-accessible surfaces of proteins and nucleic acids. Science 221: 709– 713. Davies DR, Padlan EA, Sheriff S. 1990. Antibody-antigen complexes. Annu Rev Biochem 59: 439– 473. Davis MM. 1990. T cell receptor gene diversity and selection. Annu Rev Biochem 59: 475– 496. Davis MM, Bjorkman PJ. 1988. T-cell antigen receptor genes and T-cell recognition. Nature 334: 395– 402. DiGiusto DL, Palmer E. 1994. An analysis of sequence variation in the β chain framework and complementarity determining regions of an alloreactive T cell receptor. Mot Immunol 31: 693– 699. Ganju RK, Smiley ST, Bajorath J, Novotny J, Reinherz EL. 1992. Similarity between fluorescein-specific T-cell receptor and antibody in chemical details of antigen recognition. Proc Natl Acad Sci USA 89: 11552– 11556. Genot J, Kollman PA. 1992. Molecular dynamics studies of a DNA-binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor. Protein Sci 1: 1185– 1205. Hagler AT. 1985. Theoretical simulation of conformation, energetics, and dynamics of peptides. In: J Meienhofer, ed. Conformation in biology & drug design, the peptides, vol 7. New York: Academic Press, pp 213– 228. Hedrick SM, Engel I, McElligot DL, Fink PJ, Hsu ML, Hansburg D, Matis A. 1988. Selection of amino acid sequences in the β chain of T cell antigen receptor. Science 239: 1541– 1544. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Chi YI, Stauffacher C, Strominger JL, Wiley DC. 1994. Three-dimensional structure of a human class II histocompatibility molecule completed with superantigen. Nature 368: 711– 718. Jorgensen JL, Esser U, Fazekas de St Groth B, Reay PA, Davis MM. 1992a Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature 355: 224– 230. Jorgensen JL, Reay PA, Ehrich EW, Davis MM. 1992b Molecular components of T-cell recognition. Annu Rev Immunol 10: 835– 873. Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. 1991. Sequences of proteins of immunological interest, 5th ed. Bethesda, Maryland: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, NIH Publication No. 91–3242. Kabsch W, Sander C. 1983. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymer 22: 2511– 2631. Kang J, Chambers C, Pawling J, Scott C, Hozumi N. 1994. Conserved amino acids residues in the complementarity determining region 1 of the TCR β-chain are involved in the recognition of conventional Ag and Mls-1 superantigen. J Mol Immunol 152: 5305– 5317. Katayama CD, Eidelman FJ, Dunan A, Hooshmand, Hedrick SM. 1995. Predicted complementary determining regions of the T cell antigen receptor determine antigen specificity. EMBO J 14: 927– 938. Lone YC, Bellio M, Prochnicka-Chalufour A, Ojcius DM, Boissel N, Ottenhoff TMH, Klausner RD, Abasto JP, Kourilsky P. 1994. Role of the CDR1 region of the TCR β chain in the binding to purified MHC-peptide complex. Int Immunol 6: 1561– 1565. Lüthy R, Bowie JV, Eisenberg D. 1992. Assessment of protein models with three-dimensional profiles. Nature 356: 83– 85. Marquart M, Deisenhofer J, Huber R. 1980. Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution. J Mol Biol 141: 369– 391. Nalefski EA, Kasibhatla S, Rao A. 1992. Functional analysis of the binding site on the T cell receptor α chain. J Exp Med 175: 1553– 1563. Novotny J, Tonegawa S, Saito H, Kranz DM, Eisen H. 1986. Secondary, tertiary, and quaternary structure of T-cell-specific immunoglobulin-like polypeptide chains. Proc Natl Acad Sci USA 83: 742– 746. Padlan EA. 1994. The anatomy of the antibody molecule. Mol Immunol 31: 169– 193. Patten PA, Rock EP, Sonoda T, Fazekas de St Groth B, Jorgensen JL, Davis MM. 1993. Transfer of putative complementarity-determining region loops of T cell receptors V domains confers toxin reactivity but not pep-tide/MHC specificity. J Immunol 150: 2281– 2294. Poljak RJ, Amzel LM, Avey HP, Chen BL, Phizacherley RP, Saul F. 1973. Three-dimensional structure of the Fab' fragment of a human immunoglobulin at 2.8-Å resolution. Proc Natl Acad Sci USA 70: 3305– 3310. Prochnicka-Chalufour A, Casanova JL, Avrameas S, Claverie JM, Kourilsky P. 1991. Biased amino acids distribution in regions of the T cell receptors and MHC molecules potentially involved in their association. Int Immunol 3: 853– 864. Stanfield RL, Fieser TM, Lerner RA, Wilson IA. 1990. Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 Å. Science 248: 712– 719. Stern LJ, Brown JH, Jardetzky TS, Gorga JC, Urban RG, Strominger JL, Wiley DC. 1994. Crystal structure of the human class II MHC protein HLA-DR1 completed with an antigenic peptide from influenza virus. Nature 368: 215– 221. Tramontano A, Chothia C, Lesk AM. 1990. Framework residue 71 is a major determinant of the position and conformation of the second hyper-variable region in the VH domains of immunoglobulins. J Mol Biol 215: 175– 182. Wilson IA, Stanfield RL. 1993. Antibody-antigen interactions. Curr Opin Struct Biol 3: 113– 118. Wu TT, Kabat EA. 1970. An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J Exp Med 132: 211– 250. Citing Literature Volume4, Issue9September 1995Pages 1708-1717 ReferencesRelatedInformation

Referência(s)