Artigo Acesso aberto Revisado por pares

Hysteresis switching adaptive control of linear multivariable systems

1994; Institute of Electrical and Electronics Engineers; Volume: 39; Issue: 7 Linguagem: Inglês

10.1109/9.299622

ISSN

2334-3303

Autores

Steven R. Weller, Graham C. Goodwin,

Tópico(s)

Adaptive Control of Nonlinear Systems

Resumo

This paper presents a model reference adaptive control scheme for deterministic continuous-time multivariable systems represented by square, strictly proper, minimum-phase transfer function matrices. A typical requirement of existing algorithms is to assume that the zero structure at infinity and the high-frequency gain matrix are fully (or at least partially) known. It is well known that these requirements may be very restrictive, since, in general, both the zero structure at infinity and the high-frequency gain matrix depend on plant parameters. In this paper we show that these restrictive assumptions may be considerably weakened using Morse et al.'s hysteresis switching control strategy (1992). The strategy entails running a finite number of parameter estimators in parallel and using a switching algorithm to select between candidate estimators based on their associated prediction errors. Hysteresis in the switching algorithm precludes switching arbitrarily rapidly between estimators, and all switching ceases within a finite time. The results represent a significant step forward in understanding the minimal amount of prior knowledge necessary to design a stabilizing controller for a linear multivariable system. >

Referência(s)