Gasphasenoxidation von Propan und 1‐Buten durch [V 3 O 7 ] + : Wechselspiel von Experiment und Theorie
2006; Wiley; Volume: 118; Issue: 28 Linguagem: Inglês
10.1002/ange.200600045
ISSN1521-3757
AutoresSandra Feyel, Detlef Schröder, Xavier Rozanska, Joachim Sauer, Helmut Schwarz,
Tópico(s)Oxidative Organic Chemistry Reactions
ResumoAngewandte ChemieVolume 118, Issue 28 p. 4793-4797 Zuschrift Gasphasenoxidation von Propan und 1-Buten durch [V3O7]+: Wechselspiel von Experiment und Theorie† Sandra Feyel Dipl.-Chem., Sandra Feyel Dipl.-Chem. Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Deutschland, Fax: (+49) 30-314-21102Search for more papers by this authorDetlef Schröder Dr., Detlef Schröder Dr. Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Deutschland, Fax: (+49) 30-314-21102Search for more papers by this authorXavier Rozanska Dr., Xavier Rozanska Dr. Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Deutschland, Fax: (+49) 30-2093-7136Search for more papers by this authorJoachim Sauer Prof. Dr., Joachim Sauer Prof. Dr. [email protected] Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Deutschland, Fax: (+49) 30-2093-7136Search for more papers by this authorHelmut Schwarz Prof. Dr., Helmut Schwarz Prof. Dr. [email protected] Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Deutschland, Fax: (+49) 30-314-21102Search for more papers by this author Sandra Feyel Dipl.-Chem., Sandra Feyel Dipl.-Chem. Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Deutschland, Fax: (+49) 30-314-21102Search for more papers by this authorDetlef Schröder Dr., Detlef Schröder Dr. Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Deutschland, Fax: (+49) 30-314-21102Search for more papers by this authorXavier Rozanska Dr., Xavier Rozanska Dr. Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Deutschland, Fax: (+49) 30-2093-7136Search for more papers by this authorJoachim Sauer Prof. Dr., Joachim Sauer Prof. Dr. [email protected] Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Deutschland, Fax: (+49) 30-2093-7136Search for more papers by this authorHelmut Schwarz Prof. Dr., Helmut Schwarz Prof. Dr. [email protected] Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Deutschland, Fax: (+49) 30-314-21102Search for more papers by this author First published: 03 July 2006 https://doi.org/10.1002/ange.200600045Citations: 30 † Diese Arbeit wurde vom Fonds der Chemischen Industrie und von der Deutschen Forschungsgemeinschaft (SFB 546) gefördert. X.R. und S.F. danken der Alexander von Humboldt-Stiftung und dem GRK 352 für Stipendien. Read the full textAboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Guter Anfang ist halb gewonnen. Eine Kombination experimenteller und theoretischer Studien zur Dehydrierung von Kohlenwasserstoffen durch [V3O7]+ zeigt eindrucksvoll die entscheidende Rolle der anfänglichen C-H-Aktivierung. So erweist sich das einfache Alkan Propan als gänzlich unreaktiv (oben im Bild), während 1-Buten durch [V3O7]+ rasch oxidiert wird (unten im Bild). Supporting Information Hintergrundinformationen zu diesem Beitrag sind im WWW unter http://www.wiley-vch.de/contents/jc_2001/2006/z600045_s.pdf zu finden oder können beim Autor angefordert werden. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1G. Centi, F. Cavani, F. Trifirò, Selective Oxidation by Heterogeneous Catalysis, Plenum, New York, 2001. 10.1007/978-1-4615-4175-2 Google Scholar 2 2aM. Calatayud, B. Silvi, J. Andres, A. Beltran, Chem. Phys. Lett. 2001, 333, 493–503; 10.1016/S0009-2614(00)01287-2 CASWeb of Science®Google Scholar 2bM. Calatayud, J. Andres, A. Beltran, J. Phys. Chem. A 2001, 105, 9760–9775; 10.1021/jp011535x CASWeb of Science®Google Scholar 2cM. Calatayud, J. Andres, A. Beltran, B. Silvi, Theor. Chem. Acc. 2001, 105, 299–308; 10.1007/s002140000241 CASWeb of Science®Google Scholar 2dL. Gracia, J. Andres, V. S. Safont, A. Beltran, J. R. Sambrano, Organometallics 2004, 23, 730–739. 10.1021/om0342098 CASWeb of Science®Google Scholar 3aS. F. Vyboishchikov, J. Sauer, J. Phys. Chem. A 2000, 104, 10913–10922; 10.1021/jp001936x CASWeb of Science®Google Scholar 3bS. F. Vyboishchikov, J. Sauer, J. Phys. Chem. A 2001, 105, 8588–8598; 10.1021/jp012294w CASWeb of Science®Google Scholar 3cJ. Sauer, J. Doebler, Dalton Trans. 2004, 3116–3121. 10.1039/b402873b CASPubMedWeb of Science®Google Scholar 4J. R. T. Johnson, I. Panas, Inorg. Chem. 2000, 39, 3192–3204. 10.1021/ic991144l CASPubMedWeb of Science®Google Scholar 5G. K. Koyanagi, D. K. Böhme, I. Kretzschmar, D. Schröder, H. Schwarz, J. Phys. Chem. A 2001, 105, 4259–4271. 10.1021/jp004197t CASWeb of Science®Google Scholar 6aG. C. Nieman, E. K. Parks, S. C. Richtsmeier, K. Liu, L. G. Pobo, S. J. Riley, High Temp. Sci. 1986, 22, 115–138; CASWeb of Science®Google Scholar 6bR. C. Bell, K. A. Zemski, K. P. Kerns, H. T. Deng, A. W. Castleman, J. Phys. Chem. A 1998, 102, 1733–1742; 10.1021/jp9734538 CASWeb of Science®Google Scholar 6cM. Foltin, G. J. Stueber, E. R. Bernstein, J. Chem. Phys. 1999, 111, 9577–9586; 10.1063/1.480290 CASWeb of Science®Google Scholar 6dL. Gracia, J. R. Sambrano, J. Andrés, A. Beltrán, Organometallics 2006, 25, 1643–1653. 10.1021/om050971t CASWeb of Science®Google Scholar 7aR. C. Bell, K. A. Zemski, A. W. Castleman, J. Phys. Chem. A 1998, 102, 8293–8299; 10.1021/jp9827330 CASWeb of Science®Google Scholar 7bK. A. Zemski, D. R. Justes, A. W. Castleman, J. Phys. Chem. B 2002, 106, 6136–6148; 10.1021/jp0142334 CASWeb of Science®Google Scholar 7cD. R. Justes, R. Mitric, N. A. Moore, V. Bonacic-Koutecky, A. W. Castleman, J. Am. Chem. Soc. 2003, 125, 6289–6299. 10.1021/ja021349k CASPubMedWeb of Science®Google Scholar 8A. Dinca, T. P. Davis, K. J. Fisher, D. R. Smith, G. D. Willett, Int. J. Mass Spectrom. 1999, 182/ 183, 73–84. Google Scholar 9aK. R. Asmis, M. Brümmer, C. Kaposta, G. Santambrogio, G. von Helden, G. Meijer, K. Rademann, L. Wöste, Phys. Chem. Chem. Phys. 2002, 4, 1101–1104; 10.1039/b111056j CASWeb of Science®Google Scholar 9bK. R. Asmis, G. Meijer, M. Brümmer, C. Kaposta, G. Santambrogio, L. Wöste, J. Sauer, J. Chem. Phys. 2004, 120, 6461–6470; 10.1063/1.1650833 CASPubMedWeb of Science®Google Scholar 9cK . R. Asmis, G. Santambrogio, M. Brümmer, J. Sauer, Angew. Chem. 2005, 117, 3182–3185; 10.1002/ange.200462894 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 3122–3125. 10.1002/anie.200462894 CASPubMedWeb of Science®Google Scholar 10L. Holmgren, A. Rosén, J. Chem. Phys. 1999, 110, 2629–2636. 10.1063/1.477984 CASWeb of Science®Google Scholar 11J. Xu, M. T. Rodgers, J. B. Griffin, P. B. Armentrout, J. Chem. Phys. 1998, 108, 9339–9350. 10.1063/1.476386 CASWeb of Science®Google Scholar 12aL. Gracia, J. R. Sambrano, V. S. Safont, M. Calatayud, A. Beltran, J. Andres, J. Phys. Chem. A 2003, 107, 3107–3120; 10.1021/jp0222696 CASWeb of Science®Google Scholar 12bJ. N. Harvey, M. Diefenbach, D. Schröder, H. Schwarz, Int. J. Mass Spectrom. 1999, 182/ 183, 85–97. Google Scholar 13 13aM. Engeser, M. Schlangen, D. Schröder, H. Schwarz, Y. Takashi, Y. Kazunari, Organometallics 2003, 22, 3933–3943; 10.1021/om030353h CASWeb of Science®Google Scholar 13bM. Engeser, D. Schröder, T. Weiske, H. Schwarz, J. Phys. Chem. A 2003, 107, 2855–2859. 10.1021/jp0222088 CASWeb of Science®Google Scholar 14S. Feyel, D. Schröder, H. Schwarz, J. Phys. Chem. A 2006, 110, 2647–2654. 10.1021/jp054799i CASPubMedWeb of Science®Google Scholar 15X. Rozanska, J. Sauer, unveröffentlichte Ergebnisse. Google Scholar 16 16aJ. L. Carreón-Macedo, J. N. Harvey, J. Am. Chem. Soc. 2004, 126, 5789–5797; 10.1021/ja049346q CASPubMedWeb of Science®Google Scholar 16bfür einen Übersichtsartikel zur Rolle von Spinzuständen in Ionen-Molekül-Reaktionen in der Gasphase siehe: H. Schwarz, Int. J. Mass Spectrom. 2004, 237, 75–103; 10.1016/j.ijms.2004.06.006 CASWeb of Science®Google Scholar 16cJ. M. Mercero, J. M. Matxain, X. Lopez, D. M. York, A. Largo, L. A. Eriksson, J. M. Ugalde, Int. J. Mass Spectrom. 2005, 240, 37–99. 10.1016/j.ijms.2004.09.018 CASWeb of Science®Google Scholar 17S. Bärsch, D. Schröder, H. Schwarz, J. Phys. Chem. A 2000, 104, 5101–5110. 10.1021/jp994389s CASWeb of Science®Google Scholar 18 18aU. Achatz, C. Berg, S. Joos, B. S. Fox, M. K. Beyer, G. Niedner-Schatteburg, V. E. Bondybey, Chem. Phys. Lett. 2000, 320, 53–58; 10.1016/S0009-2614(00)00179-2 CASWeb of Science®Google Scholar 18bX. G. Zhang, R. Liyanage, P. B. Armentrout, J. Am. Chem. Soc. 2001, 123, 5563–5575; 10.1021/ja010382o CASPubMedWeb of Science®Google Scholar 18cD. Schröder, H. Schwarz, Can. J. Chem. 2005, 83, 1936–1944. 10.1139/v05-217 Web of Science®Google Scholar 19 19aT. Su, W. J. Chesnavich, J. Chem. Phys. 1982, 76, 5183–5185; 10.1063/1.442828 CASWeb of Science®Google Scholar 19bT. Su, J. Chem. Phys. 1988, 88, 4102–4103; 10.1063/1.453817 CASWeb of Science®Google Scholar 19cT. Su, J. Chem. Phys. 1988, 89, 5355–5356. 10.1063/1.455750 CASWeb of Science®Google Scholar 20D. Schröder, T. Weiske, H. Schwarz, Int. J. Mass Spectrom. 2002, 219, 729–738. 10.1016/S1387-3806(02)00751-0 CASWeb of Science®Google Scholar 21J. Spandl, C. Daniel, I. Brudgam, H. Hartl, Angew. Chem. 2003, 115, 1195–1198; 10.1002/ange.200390277 Google ScholarAngew. Chem. Int. Ed. 2003, 42, 1163–1166. 10.1002/anie.200390306 PubMedWeb of Science®Google Scholar 22D. Schröder, M. Engeser, M. Brönstrup, C. Daniel, J. Spandl, H. Hartl, Int. J. Mass Spectrom. 2003, 228, 743–757. 10.1016/S1387-3806(03)00236-7 CASWeb of Science®Google Scholar 23 23aA. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652; 10.1063/1.464913 CASWeb of Science®Google Scholar 23bC. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785 CASPubMedWeb of Science®Google Scholar 24A. Schäfer, C. Huber, R. Ahlrichs, J. Chem. Phys. 1994, 100, 5829–5835. 10.1063/1.467146 CASWeb of Science®Google Scholar 25 25aR. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett. 1989, 162, 165–169; 10.1016/0009-2614(89)85118-8 CASWeb of Science®Google Scholar 25bO. Treutler, R. Ahlrichs, J. Chem. Phys. 1995, 102, 346–354; 10.1063/1.469408 CASWeb of Science®Google Scholar 25cK. Eichkorn, F. Weigend, O. Treutler, R. Ahlrichs, Theor. Chem. Acc. 1997, 97, 119–124; 10.1007/s002140050244 CASWeb of Science®Google Scholar 25dM. von Arnim, R. Ahlrichs, J. Chem. Phys. 1999, 111, 9183–9190. 10.1063/1.479510 CASWeb of Science®Google Scholar 26L. Noodleman, J. Chem. Phys. 1981, 74, 5737–5743. 10.1063/1.440939 CASWeb of Science®Google Scholar 27R. Caballol, O. Castell, F. Illas, I. de P. R. Moreira, J. P. Malrieu, J. Phys. Chem. A 1997, 101, 7860–7866. 10.1021/jp9711757 CASWeb of Science®Google Scholar 28J. Gräfenstein, A. M. Hjerpe, E. Kraka, D. Cremer, J. Phys. Chem. A 2000, 104, 1748–1761. 10.1021/jp993122q CASWeb of Science®Google Scholar Citing Literature Volume118, Issue28July 10, 2006Pages 4793-4797 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation
Referência(s)