Artigo Revisado por pares

Stability of peakons

2000; Wiley; Volume: 53; Issue: 5 Linguagem: Inglês

10.1002/(sici)1097-0312(200005)53

ISSN

1097-0312

Autores

Adrian Constantin, Walter A. Strauss,

Tópico(s)

Nonlinear Photonic Systems

Resumo

Communications on Pure and Applied MathematicsVolume 53, Issue 5 p. 603-610 Stability of peakons Adrian Constantin, Adrian Constantin [email protected] University of Zurich, Institute for Mathematics, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandSearch for more papers by this authorWalter A. Strauss, Walter A. Strauss [email protected] Brown University, Department of Mathematics, Box 1917, Lefschetz Center for Dynamical Systems, Providence, RI 02912Search for more papers by this author Adrian Constantin, Adrian Constantin [email protected] University of Zurich, Institute for Mathematics, Winterthurerstrasse 190, CH-8057 Zurich, SwitzerlandSearch for more papers by this authorWalter A. Strauss, Walter A. Strauss [email protected] Brown University, Department of Mathematics, Box 1917, Lefschetz Center for Dynamical Systems, Providence, RI 02912Search for more papers by this author First published: 17 May 2000 https://doi.org/10.1002/(SICI)1097-0312(200005)53:5 3.0.CO;2-LCitations: 635AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The peakons are peaked solitary wave solutions of a certain nonlinear dispersive equation that is a model in shallow water theory and the theory of hyperelastic rods. We give a very simple proof of the orbital stability of the peakons in the H1 norm. © 2000 John Wiley & Sons, Inc. Bibliography 1 Arnold, V. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. (French) Ann Inst Fourier (Grenoble) 16 (1966), fasc. 1, 319–361. 10.5802/aif.233 Web of Science®Google Scholar 2 Benjamin, T. B.; Olver, P. J. Hamiltonian structure, symmetries and conservation laws for water waves. J Fluid Mech 125 (1982), 137–185. 10.1017/S0022112082003292 Web of Science®Google Scholar 3 Camassa, R.; Holm, D. D. An integrable shallow water equation with peaked solitons. Phys Rev Lett 71 (1993), no. 11, 1661–1664. 10.1103/PhysRevLett.71.1661 CASPubMedWeb of Science®Google Scholar 4 Camassa, R.; Holm, D. D.; Hyman, J. A new integrable shallow water equation. Adv Appl Mech 31 (1994), 1–33. 10.1016/S0065-2156(08)70254-0 Google Scholar 5 Constantin, A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann Inst Fourier; (Grenoble), forthcoming. Google Scholar 6 Constantin, A.; Escher, J. Global existence and blow-up for a shallow water equation. Ann Scuola Norm Sup Pisa Cl Sci (4) 26 (1998), no. 2, 303–328. Google Scholar 7 Constantin, A.; Escher, J. Wave breaking for nonlinear nonlocal shallow water equations. Acta Math 181 (1998), no. 2, 229–243. 10.1007/BF02392586 Web of Science®Google Scholar 8 Constantin, A.; McKean, H. P. A shallow water equation on the circle. Comm Pure Appl Math 52 (1999), no. 8, 949–982. 10.1002/(SICI)1097-0312(199908)52:8 3.0.CO;2-D Web of Science®Google Scholar 9 Constantin, A.; Molinet, L. Orbital stability of the solitary waves for a shallow water equation. Preprint, 1998. Google Scholar 10 Dai, H.-H. Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech 127 (1998), no. 1–4, 193–207. 10.1007/BF01170373 Web of Science®Google Scholar 11 Fuchssteiner, B.; Fokas, A. S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys D 4 (1981/ 1982), no. 1, 47–66. 10.1016/0167-2789(81)90004-X Web of Science®Google Scholar 12 Kouranbaeva, S. The Camassa-Holm equation as a geodesic flow on the diffeomorphism group. J Math Phys 40 (1999), no. 2, 857–868. 10.1063/1.532690 Web of Science®Google Scholar 13 Li, Y.; Olver, P. J. Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J Differential Equations, forthcoming. Google Scholar 14 McKean, H. P. Breakdown of a shallow water equation. Asian J Math, forthcoming. Google Scholar 15 Misiołek, G. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J Geom Phys 24 (1998), no. 3, 203–208. 10.1016/S0393-0440(97)00010-7 Web of Science®Google Scholar 16 Rodríguez-Blanco, G. On the Cauchy problem for the Camassa-Holm equation. IMPA preprint, 155. Institute of Pure and Applied Mathematics, Rio de Janeiro, 1998. Google Scholar 17 Samsonov, A. M. Nonlinear strain waves in elastic waveguides. Nonlinear waves in solids (Udine, 1993), 349–382, CISM Courses and Lectures, 341. Springer, Vienna, 1994. 10.1007/978-3-7091-2444-4_6 Google Scholar 18 Toland, J. F. On the existence of a wave of greatest height and Stokes's conjecture. Proc Roy Soc London Ser A 363 (1978), no. 1715, 469–485. 10.1098/rspa.1978.0178 Web of Science®Google Scholar Citing Literature Volume53, Issue5May 2000Pages 603-610 ReferencesRelatedInformation

Referência(s)