Artigo Revisado por pares

Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments

2011; Wiley; Volume: 27; Issue: 3 Linguagem: Inglês

10.1002/asmb.903

ISSN

1526-4025

Autores

Roselinde Kessels, Peter Goos, Bradley Jones, Martina Vandebroek,

Tópico(s)

Consumer Market Behavior and Pricing

Resumo

Applied Stochastic Models in Business and IndustryVolume 27, Issue 3 p. 197-203 Discussion Paper Rejoinder: the usefulness of Bayesian optimal designs for discrete choice experiments Roselinde Kessels, Roselinde Kessels [email protected] Faculty of Applied Economics and StatUa Center for Statistics, Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerp, BelgiumSearch for more papers by this authorPeter Goos, Corresponding Author Peter Goos [email protected] Faculty of Applied Economics and StatUa Center for Statistics, Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerp, Belgium Erasmus Universiteit Rotterdam, Erasmus School of Economics, Postbus 1738, 3000 DR, Rotterdam, The NetherlandsFaculty of Applied Economics and StatUa Center for Statistics, Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerp BelgiumSearch for more papers by this authorBradley Jones, Bradley Jones [email protected] SAS Institute Inc., SAS Campus Drive, Cary, NC 27513 USA Universiteit Antwerpen, Faculty of Applied Economics and StatUa Center for Statistics, Prinsstraat 13, 2000 Antwerpen, BelgiumSearch for more papers by this authorMartina Vandebroek, Martina Vandebroek [email protected] Faculty of Business and Economics, Katholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium Leuven Statistics Research Center, Katholieke Universiteit, Leuven, Celestijnenlaan 200B, 3001 Leuven-Heverlee, BelgiumSearch for more papers by this author Roselinde Kessels, Roselinde Kessels [email protected] Faculty of Applied Economics and StatUa Center for Statistics, Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerp, BelgiumSearch for more papers by this authorPeter Goos, Corresponding Author Peter Goos [email protected] Faculty of Applied Economics and StatUa Center for Statistics, Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerp, Belgium Erasmus Universiteit Rotterdam, Erasmus School of Economics, Postbus 1738, 3000 DR, Rotterdam, The NetherlandsFaculty of Applied Economics and StatUa Center for Statistics, Universiteit Antwerpen, Prinsstraat 13, 2000 Antwerp BelgiumSearch for more papers by this authorBradley Jones, Bradley Jones [email protected] SAS Institute Inc., SAS Campus Drive, Cary, NC 27513 USA Universiteit Antwerpen, Faculty of Applied Economics and StatUa Center for Statistics, Prinsstraat 13, 2000 Antwerpen, BelgiumSearch for more papers by this authorMartina Vandebroek, Martina Vandebroek [email protected] Faculty of Business and Economics, Katholieke Universiteit Leuven, Naamsestraat 69, 3000 Leuven, Belgium Leuven Statistics Research Center, Katholieke Universiteit, Leuven, Celestijnenlaan 200B, 3001 Leuven-Heverlee, BelgiumSearch for more papers by this author First published: 29 June 2011 https://doi.org/10.1002/asmb.903Citations: 13Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Kessels R, Jones B, Goos P, Vandebroek M.The usefulness of Bayesian optimal designs for discrete choice experiments.Applied Stochastic Models in Business and Industry 2011; 27: 173–188. 10.1002/asmb.906 Web of Science®Google Scholar 2 Ferrini S, Scarpa R.Designs with a priori information for nonmarket valuation with choice experiments: a Monte Carlo study.Journal of Environmental Economics and Management 2007; 53: 342–363. 10.1016/j.jeem.2006.10.007 Web of Science®Google Scholar 3 Yu J, Goos P, Vandebroek M.Efficient conjoint choice designs in the presence of respondent heterogeneity.Marketing Science 2009; 28: 122–135. 10.1287/mksc.1080.0386 Web of Science®Google Scholar 4 Bliemer MCJ, Rose JM.Construction of experimental designs for mixed logit models allowing for correlation across choice observations.Transportation Research Part B 2010; 44: 720–734. 10.1016/j.trb.2009.12.004 Web of Science®Google Scholar 5 Vermeulen B, Goos P, Vandebroek M.Obtaining more information from conjoint experiments by best-worst choices.Computational Statistics and Data Analysis 2010; 54: 1426–1433. 10.1016/j.csda.2010.01.002 Web of Science®Google Scholar 6 Vermeulen B, Goos P, Scarpa R, Vandebroek M.Bayesian conjoint choice designs for measuring willingness to pay.Environmental and Resource Economics 2011; 48: 129–149. 10.1007/s10640-010-9401-6 Web of Science®Google Scholar 7 Holling H, Schwabe R.Discussion on ‘The usefulness of Bayesian optimal designs for discrete choice experiments’.Applied Stochastic Models in Business and Industry 2011; 27: 189–192. 10.1002/asmb.904 Web of Science®Google Scholar 8 Grasshoff U, Grossmann H, Holling H, Schwabe R.Optimal paired comparison designs for first-order interactions.Statistics 2003; 37: 373–386. 10.1080/0233188031000154812 Web of Science®Google Scholar 9 Grasshoff U, Grossmann H, Holling H, Schwabe R.Optimal designs for main effects in linear paired comparison models.Journal of Statistical Planning and Inference 2004; 126: 361–376. 10.1016/j.jspi.2003.07.005 Web of Science®Google Scholar 10 Street DJ, Burgess L. The Construction of Optimal Stated Choice Experiments: Theory and Methods.Wiley:Hoboken, NJ, 2007. 10.1002/9780470148563 Google Scholar 11 Grossmann H, Grasshoff U, Schwabe R.Approximate and exact optimal designs for paired comparisons of partial profiles when there are two groups of factors.Journal of Statistical Planning and Inference 2009; 139: 1171–1179. 10.1016/j.jspi.2008.07.006 Web of Science®Google Scholar 12 Bliemer MCJ, Rose JM, Hess S.Approximation of Bayesian efficiency in experimental choice designs.Journal of Choice Modelling 2008 1: 98–127. 10.1016/S1755-5345(13)70024-1 Web of Science®Google Scholar 13 Yu J, Goos P, Vandebroek M.Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments.Transportation Research B 2010; 44: 1268–1289. 10.1016/j.trb.2010.02.005 Web of Science®Google Scholar 14 Sándor Z, Wedel M.Designing conjoint choice experiments using managers' prior beliefs.Journal of Marketing Research 2001; 38: 430–444. 10.1509/jmkr.38.4.430.18904 Web of Science®Google Scholar 15 Kessels R, Goos P, Vandebroek M.A comparison of criteria to design efficient choice experiments.Journal of Marketing Research 2006; 43: 409–419. 10.1509/jmkr.43.3.409 Web of Science®Google Scholar 16 Schoen ED, Eendebak PT, Nguyen Man VM.Complete enumeration of pure-level and mixed-level orthogonal arrays.Journal of Combinatorial Designs 2010; 18: 123–140. 10.1002/jcd.20236 Web of Science®Google Scholar 17 Huber J, Zwerina K.The importance of utility balance in efficient choice designs.Journal of Marketing Research 1996; 33: 307–317. 10.2307/3152127 Web of Science®Google Scholar 18 Rose J.Discussion on ‘The usefulness of Bayesian optimal designs for discrete choice experiments’.Applied Stochastic Models in Business and Industry 2011; 27: 193–196. 10.1002/asmb.882 Web of Science®Google Scholar 19 Allison PD. Convergence failures in logistic regression. SAS Global Forum, Paper 360-2008, http://www2.sas.com/proceedings/forum2008/360-2008.pdf [visited on 2 June 2011]. Google Scholar 20 Yu J, Goos P, Vandebroek M.Model-robust design of conjoint choice experiments.Communications in Statistics: Simulation and Computation 2008; 37: 1603–1621. 10.1080/03610910802244638 Web of Science®Google Scholar 21 Vermeulen B, Goos P, Vandebroek M.Models and optimal designs for conjoint choice experiments including a no-choice options.International Journal of Research in Marketing 2008; 25: 94–103. 10.1016/j.ijresmar.2007.12.004 Web of Science®Google Scholar 22 Dror HA, Steinberg DM.Sequential experimental designs for generalized linear models.Journal of the American Statistical Association 2008; 103: 288–298. 10.1198/016214507000001346 CASWeb of Science®Google Scholar 23 Chaudhuri P, Mykland PA.On efficient designing of nonlinear experiments.Statistica Sinica 1993 5: 421–440. Web of Science®Google Scholar 24 Yu J, Goos P, Vandebroek M. Individually adapted sequential Bayesian designs for conjoint choice experiments. Working Paper KBI-0902, Faculteit Economie en Bedrijfswetenschappen, K.U. Leuven, 2009. Google Scholar 25 Toubia O, Hauser JR, Garcia R.Probabilistic polyhedral methods for adaptive choice-based conjoint analysis: theory and application.Marketing Science 2007; 26: 596–610. 10.1287/mksc.1060.0257 Web of Science®Google Scholar 26 Toubia O, Hauser JR, Simester DI.Polyhedral methods for adaptive choice-based conjoint analysis.Journal of Marketing Research 2004 41: 116–131. 10.1509/jmkr.41.1.116.25082 Web of Science®Google Scholar 27 Scarpa R, Campbell D, Hutchinson WG.Benefit estimates for landscape improvements: sequential Bayesian design and respondents’ rationality in a choice experiment.Land Economics 2007; 83: 617–634. 10.3368/le.83.4.617 Web of Science®Google Scholar 28 Kessels R, Jones B, Goos P, Vandebroek M.An efficient algorithm for constructing Bayesian optimal choice designs.Journal of Business and Economic Statistics 2009; 27: 279–291. 10.1198/jbes.2009.0026 Web of Science®Google Scholar 29 Bliemer MCJ, Rose JM. Serial choice conjoint analysis for estimating discrete choice models. In Choice Modelling: The State-of-the-Art and the State-of-the-Art Practice, S Hess, A Daly (eds),Emerald,Bingley, 2010; 139–161. Google Scholar Citing Literature Volume27, Issue3May/June 2011Pages 197-203 ReferencesRelatedInformation

Referência(s)