Intravoxel Incoherent Motion Perfusion MR Imaging: A Wake-Up Call
2008; Radiological Society of North America; Volume: 249; Issue: 3 Linguagem: Inglês
10.1148/radiol.2493081301
ISSN1527-1315
Autores Tópico(s)Advanced MRI Techniques and Applications
ResumoHomeRadiologyVol. 249, No. 3 PreviousNext Reviews and CommentaryEditorialsIntravoxel Incoherent Motion Perfusion MR Imaging: A Wake-Up CallDenis Le BihanDenis Le BihanAuthor Affiliations1From NeuroSpin, I2BM, Bâtiment 145, CEA Saclay-Center, 91191 Gif-sur-Yvette, France. Received July 28, 2008; revision requested July 28; revision received July 29; accepted July 30; final version accepted July 31.Address correspondence to the author (e-mail: [email protected]).Denis Le BihanPublished Online:Dec 1 2008https://doi.org/10.1148/radiol.2493081301MoreSectionsFull textPDF ToolsAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookXLinked In References1 Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging—pilot study. Radiology 2008; 249(3):891–899. Google Scholar2 Le Bihan D. Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 2003; 4: 469–480. Crossref, Medline, Google Scholar3 Hagmann P, Kurant M, Gigandet X, et al. Mapping human whole-brain structural networks with diffusion MRI. PloS ONE 2007; 2: e597. Crossref, Medline, Google Scholar4 Yamada I, Aung W, Himeno Y, Nakagawa T, Shibuya H. Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. Radiology 1999; 210: 617–623. Link, Google Scholar5 Le Bihan D, Breton E. Imagerie de diffusion in vivo par résonance magnétique nucléaire. C.R. Acad.Sc.Paris 1985; T. 301, Série II: 1109–1112. Google Scholar6 Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401–407. Link, Google Scholar7 Le Bihan D. The ‘wet mind’: water and functional neuroimaging. Phys Med Biol 2007; 52: R57–R90. Crossref, Medline, Google Scholar8 Einstein A. Über die von der molecularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys (Leipzig) 1905; 17: 549–569. Google Scholar9 Le Bihan D, Moonen CT, Van Zijl PC, Pekar J, Des Pres D. Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr 1991; 15: 19–25. Crossref, Medline, Google Scholar10 Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion (IVIM) MR imaging. Radiology 1988; 168: 497–505. Link, Google Scholar11 Le Bihan D, Turner R. The capillary network: a link between IVIM and classical perfusion. Magn Reson Med 1992; 27: 171–178. Crossref, Medline, Google Scholar12 Dixon WT. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging: a modest proposal with tremendous potential. Radiology 1988; 168: 566–567. Link, Google Scholar13 Le Bihan D. In: Le Bihan D, ed. Diffusion and perfusion magnetic resonance imaging: applications to functional MRI. New York, NY: Raven, 1995. Google Scholar14 Pekar J, Van Zijl PC, Moonen CT. Signal to noise requirements for quantitative measurements of diffusion and capillary perfusion in brain using IVIM-MRI. Magn Reson Med 1991; 23: 1222–1129. Google Scholar15 Wirestam R, Brockstedt S, Lindgren A, et al. The perfusion fraction in volunteers and in patients with ischaemic stroke. Acta Radiol 1997; 38: 961–964. Crossref, Medline, Google Scholar16 Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J. Echo-planar imaging of intravoxel incoherent motions. Radiology 1990; 177: 407–414. Link, Google Scholar17 Chenevert TL, Pipe JG, Williams DM, Brunberg JA. Quantitative measurement of tissue perfusion and diffusion in vivo. Magn Reson Med 1991; 17: 197–212. Crossref, Medline, Google Scholar18 Neil JJ, Bosch CS, Ackerman JJ. An evaluation of the sensitivity of the intravoxel incoherent motion (IVIM) method of blood flow measurement to changes in cerebral blood flow. Magn Reson Med 1994; 32: 60–65. Crossref, Medline, Google Scholar19 Powers TA, Lorenz CH, Holburn GE, Price RR. Renal artery stenosis: in vivo perfusion MR imaging. Radiology 1991; 178: 543–548. Link, Google Scholar20 Pickens DR 3rd, Jolgren DL, Lorenz CH, Creasy JL, Price RR. Magnetic resonance perfusion/diffusion imaging of the excised dog kidney. Invest Radiol 1992; 27: 287–292. Crossref, Medline, Google Scholar21 Callot V, Bennett E, Decking UK, Balaban RS, Wen H. In vivo study of microcirculation in canine myocardium using the IVIM method. Magn Reson Med 2003; 50: 531–540. Crossref, Medline, Google Scholar22 Henkelman RM. Does IVIM measure classical perfusion? Magn Reson Med 1990; 16: 470–475. Crossref, Medline, Google Scholar23 Lorenz CH, Pickens DR 3rd, Puffer DB, Price RR. Magnetic resonance diffusion/perfusion phantom experiments. Magn Reson Med 1991; 19: 254–260. Crossref, Medline, Google Scholar24 Kennan RP, Gao JH, Zhong J, Gore JC. A general model of microcirculatory blood flow effects in gradient sensitized MRI. Med Phys 1994; 21: 539–545. Crossref, Medline, Google Scholar25 Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T. Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. AJR Am J Roentgenol 1998; 170: 397–402. Crossref, Medline, Google Scholar26 Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience. AJR Am J Roentgenol 2007; 189: 799–806. Crossref, Medline, Google Scholar27 Lewin M, Poujol-Robert A, Boelle PY, et al. Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 2007; 46: 658–665. Crossref, Medline, Google Scholar28 Sakuma H, Tamagawa Y, Kimura H, et al. Intravoxel incoherent motion (IVIM) imaging using an experimental MR unit with small bore [in Japanese]. Nippon Igaku Hoshasen Gakkai Zasshi 1989; 49: 941–943. Medline, Google Scholar29 Grubb RL Jr, Raichle ME, Eichling JO, Ter Pogossian MM. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 1974; 5: 630–639. Crossref, Medline, Google Scholar30 Yablonskiy DA, Bretthorst GL, Ackerman JJ. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664–669. Crossref, Medline, Google Scholar31 Chin CL, Wehrli FW, Hwang SN, Jaggard DL, Hackney DB, Wehrli SW. Feasibility of probing boundary morphology of structured materials by 2D NMR q-space imaging. J Magn Reson 2003; 160: 20–25. Crossref, Medline, Google Scholar32 Stanisz GJ, Szafer A, Wright GA, Henkelman RM. An analytical model of restricted diffusion in bovine optic nerve. Magn Reson Med 1997; 37: 103–111. Crossref, Medline, Google Scholar33 Niendorf T, Dijkhuizen RM, Norris DG, Van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847–857. Crossref, Medline, Google Scholar34 Assaf Y, Cohen Y. Non-mono-exponential attenuation of water and N-acetyl aspartate signals due to diffusion in brain tissue. J Magn Reson 1998; 131: 69–85. Crossref, Medline, Google Scholar35 Sotak CH. Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem Int 2004; 45: 569–582. Crossref, Medline, Google Scholar36 van der Toorn A, Sykova E, Dijkhuizen RM, et al. Dynamic changes in water ADC, energy metabolism, extracellular space volume, and tortuosity in neonatal rat brain during global ischemia. Magn Reson Med 1996; 36: 52–60. Crossref, Medline, Google Scholar37 Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, van Cauteren M. Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high-resolution 3D display. Radiat Med 2004; 22: 275–282. Medline, Google Scholar38 Ross BD, Moffat BA, Lawrence TS, et al. Evaluation of cancer therapy using diffusion magnetic resonance imaging. Mol Cancer Ther 2003; 2: 581–587. Medline, Google Scholar39 Ogawa S, Tank DW, Menon RS, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci U S A 1992; 89: 5951–5955. Crossref, Medline, Google Scholar40 Song AW, Wong EC, Tan SG, Hyde JS. Diffusion weighted fMRI at 1.5 T. Magn Reson Med 1996; 35: 155–158. Crossref, Medline, Google Scholar41 Gangstead SL, Song AW. On the timing characteristics of the apparent diffusion coefficient contrast in fMRI. Magn Reson Med 2002; 48: 385–388. Crossref, Medline, Google Scholar42 Jin T, Zhao F, Kim SG. Sources of functional apparent diffusion coefficient changes investigated by diffusion-weighted spin-echo fMRI. Magn Reson Med 2006; 56: 1283–1292. Crossref, Medline, Google Scholar43 Boxerman JL, Bandettini PA, Kwong KK, et al. The intravascular contribution of fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 1995; 34: 4–10. Crossref, Medline, Google Scholar44 Song AW, Li T. Improved spatial localization based on flow-moment-nulled and intra-voxel incoherent motion-weighted fMRI. NMR Biomed 2003; 16: 137–143. Crossref, Medline, Google Scholar45 Michelich CR, Song AW, MacFall JR. Dependence of gradient-echo and spin-echo BOLD fMRI at 4 T on diffusion weighting. NMR Biomed 2006; 19: 566–572. Crossref, Medline, Google Scholar46 Duong TQ, Yacoub E, Adriany G, Hu XP, Ugurbil K, Kim SG. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magn Reson Med 2003; 49: 1019–1027. Crossref, Medline, Google Scholar47 Lee SP, Silva AC, Kim SG. Comparison of diffusion-weighted high-resolution CBF and spin-echo BOLD fMRI at 9.4 T. Magn Reson Med 2002; 47: 736–741. Crossref, Medline, Google Scholar48 Silva AC, Williams DS, Koretsky AP. Evidence for the exchange of arterial spin-labeled water with tissue water in rat brain from diffusion-sensitized measurements of perfusion. Magn Reson Med 1997; 38: 232–237. Crossref, Medline, Google Scholar49 Kim T, Kim SG. Quantification of cerebral arterial blood volume using arterial spin labeling with intravoxel incoherent motion-sensitive gradients. Magn Reson Med 2006; 55: 1047–1057. Crossref, Medline, Google Scholar50 Van Zijl PC, Moonen CT, Faustino P, Pekar J, Kaplan O, Cohen JS. Complete separation of intracellular and extracellular information in NMR spectra of perfused cells by diffusion-weighted spectroscopy. Proc Natl Acad Sci U S A 1991; 88: 3228–3232. Crossref, Medline, Google Scholar51 Zhao L, Sukstanskii AL, Kroenke CD, et al. Intracellular water specific MR of microbead-adherent cells: HeLa cell intracellular water diffusion. Magn Reson Med 2008; 59: 79–84. Crossref, Medline, Google Scholar52 Tsuda K, Murakami T, Sakurai K, et al. Preliminary evaluation of the apparent diffusion coefficient of the kidney with a spiral IVIM sequence [in Japanese]. Nippon Igaku Hoshasen Gakkai Zasshi 1997; 57: 19–22. Medline, Google Scholar53 Moore RJ, Issa B, Tokarczuk P, et al. In vivo intravoxel incoherent motion measurements in the human placenta using echo-planar imaging at 0.5 T. Magn Reson Med 2000; 43: 295–302. Crossref, Medline, Google Scholar54 Moore RJ, Strachan BK, Tyler DJ, et al. In utero perfusing fraction maps in normal and growth restricted pregnancy measured using IVIM echo-planar MRI. Placenta 2000; 21: 726–732. Crossref, Medline, Google ScholarArticle HistoryPublished in print: 2008 FiguresReferencesRelatedDetailsCited ByIntravoxel incoherent motion magnetic resonance imaging to assess early tumor response to radiation therapy: Review and future directionsEmmanuelMesny, BenjaminLeporq, OlivierChapet, OlivierBeuf2024May1 | Magnetic Resonance Imaging, Vol. 108Diagnostic performance of diffusion-weighted imaging and intravoxel incoherent motion for renal lesions: a meta-analysisH.C.Luo, W.Q.Cheng, H.Ding, L.He2023Dec1 | Clinical Radiology, Vol. 78, No. 12Multiparametric MRI for Staging of Bowel Inflammatory Activity in Crohn's Disease with MUSE-IVIM and DCE-MRI: A Preliminary StudyLiangqiangMao, YanLi, BotaCui, LinLu, WeiqiangDou, DmytroPylypenko, JianguoZhu, HaigeLi2023Sep1 | Academic Radiology, Vol. 6Diffusion MRI of the BreastDenisLe Bihan, MamiIima, Savannah C.Partridge2023Whole-lesion histogram analysis of multiple diffusion metrics for differentiating lung cancer from inflammatory lesionsJiaxinLi, BaolinWu, ZhunHuang, YixiangZhao, SenZhao, ShuaikangGuo, ShufeiXu, XiaoleiWang, TiantianTian, ZhixueWang, JunZhou2023 | Frontiers in Oncology, Vol. 12Intravoxel incoherent motion diffusion-weighted imaging in quantitative evaluation of Ileal Crohn's disease – A comparison with dynamic contrast-enhanced magnetic resonance imaging and ileocolonoscopyPeiwenSun, DiruZhu, JunhengLi, JileiZhang, MeiyingZeng, LeileiFang, JianpingRuan, XianceZhao, YanhongShi, ShuaiWang, BinghuiZhao2023 | Magnetic Resonance Imaging, Vol. 97How Radiomics Can Improve Breast Cancer Diagnosis and TreatmentFilippoPesapane, PaoloDe Marco, AnnaRapino, EleonoraLombardo, LucaNicosia, PriyanTantrige, AnnaRotili, Anna CarlaBozzini, SilviaPenco, ValeriaDominelli, ChiaraTrentin, FedericaFerrari, MariagiorgiaFarina, LorenzaMeneghetti, AntuonoLatronico, FrancescaAbbate, DanielaOriggi, GianpaoloCarrafiello, EnricoCassano2023 | Journal of Clinical Medicine, Vol. 12, No. 4Intravoxel Incoherent Motion Factors Affecting Collapse and Nonunion of Osteoporotic Vertebral FractureIzayaOgon, TsuneoTakebayashi, HiroyukiTakashima, YasuhisaAbe, HiroshiOguma, RuiImamura, YoshihiroAkatsuka, TomonoriMorita, AtsushiTeramoto2023 | Global Spine JournalIntravoxel incoherent motion and diffusion kurtosis imaging at 3T MRI: Application to ischemic strokeAudePavilla, GiulioGambarota, AissatouSignaté, AlessandroArrigo, HervéSaint-Jalmes, MehdiMejdoubi2023 | Magnetic Resonance Imaging, Vol. 99A review of quantitative diffusion-weighted MR imaging for breast cancer: Towards noninvasive biomarkerFei-FeiYao, YanZhang2023 | Clinical Imaging, Vol. 98Editorial for “Diffusion‐Weighted MRI of the Liver in Patients With Chronic Liver Disease: A Comparative Study Between Different Fitting Approaches and Diffusion Models”StefanoColagrande, CosimoNardi, LindaCalistri2023 | Journal of Magnetic Resonance ImagingExploration of Interstitial Fibrosis in Chronic Kidney Disease by Diffusion‐Relaxation Correlation Spectrum MR Imaging: A Preliminary StudyFangLiu, WentaoHu, YawenSun, YiweiShen, WenyanZhou, YongmingDai, LeyiGu, MinfangZhang, YanZhou2023 | Journal of Magnetic Resonance Imaging, Vol. 58, No. 2Radiomics model based on intravoxel incoherent motion and diffusion kurtosis imaging for predicting histopathological grade and Ki-67 expression level of soft tissue sarcomasYi-fengZhu, Yu-shiLi, YuZhang, Ya-jieLiu, Yi-niZhang, JuanTao, Shao-wuWang2023 | Acta Radiologica, Vol. 64, No. 9The Classification Power of Classical and Intra-voxel Incoherent Motion (IVIM) Fitting Models of Diffusion-weighted Magnetic Resonance Images: An Experimental StudyRubaAlkadi, OsamaAbdullah, NaoufelWerghi2022 | Journal of Digital Imaging, Vol. 35, No. 3Series of Intravoxel Incoherent Motion and T2* Magnetic Resonance Imaging Mapping in Detection of Liver Perfusion Changes and Regeneration Among Partial Hepatectomy in Sprague-Dawley RatsShuangshuangXie, CaixinQiu, YajieSun, YongquanYu, QuanshengZhang, MingzhuBao, JinxiaZhu, RobertGrimm, WenShen2022 | Academic Radiology, Vol. 29, No. 12Intravoxel Incoherent Motion-Diffusion-Weighted MRI for Investigation of Delayed Graft Function Immediately after Kidney TransplantationYung-ChiehChang, Yi-HsinTsai, Mu-ChihChung, Kuan-JungPan, Hao-ChungHo, Hsian-MinChen, Yen-ChienOuyang, Kuo-HsiungShu, Jeon-HorChen, Jyh-WenChai, IoannisPetrakis2022 | BioMed Research International, Vol. 2022A comparative study of four diffusion-weighted imaging models in the diagnosis of cervical cancerJiaoSong, YiLu, XueWang, WenwenPeng, WenxiaoLin, ZujunHou, ZhihanYan2022 | Acta Radiologica, Vol. 63, No. 4Quantitative assessment of the microstructure of the mesorectum with different prognostic statuses by intravoxel incoherent motion diffusion-weighed magnetic resonance imagingBao-LanLu, YanChen, Zi-QiangWen, Yi-YanLiu, Yu-RuMa, Yu-TaoQue, Zhi-WenZhang, Xue-HanWu, Shen-PingYu2022 | BMC Gastroenterology, Vol. 22, No. 1Detection of the disease activity with ankylosing spondylitis through intravoxel incoherent motion diffusion-weighted MR imaging of sacroiliac jointLiLiu, ZhiminZhou, SunyuHua, LeixiXue, JiangtaoZhu, RongLiu, YongLi2022 | The British Journal of Radiology, Vol. 95, No. 1133Feasibility and Added Value of Fetal DTI Tractography in the Evaluation of an Isolated Short Corpus Callosum: Preliminary ResultsA.-E.Millischer, D.Grevent, P.Sonigo, N.Bahi-Buisson, I.Desguerre, H.Mahallati, J.-P.Bault, T.Quibel, S.Couderc, M.-L.Moutard, E.Julien, V.Dangouloff, B.Bessieres, V.Malan, T.Attie, L.-J.Salomon, N.Boddaert2022 | American Journal of Neuroradiology, Vol. 43, No. 1Prostat Kanserinin Saptanması ve Derecelendirilmesinde Voksel İçi Tutarsız Hareket (IVIM) Parametrelerinin Tanısal Değeriİbrahim HalilSEVER, Furkan ErtürkURFALI2022 | Sakarya Medical JournalThe value of intravoxel incoherent motion model-based diffusion-weighted imaging for predicting long-term outcomes in nasopharyngeal carcinomaYuhuiQin, ChenChen, HaotianChen, FabaoGao2022 | Frontiers in Oncology, Vol. 12Assessment of Fibrotic Liver Regeneration After Partial Hepatectomy With Intravoxel Incoherent Motion Diffusion-Weighted Imaging: An Experimental Study in a Rat Model With Carbon Tetrachloride Induced Liver InjuryShuangshuangXie, CaixinQiu, YajieSun, YongquanYu, ZhandongHu, KunZhang, LihuaChen, YueCheng, MingzhuBao, QuanshengZhang, JinxiaZhu, RobertGrimm, WenShen2022 | Frontiers in Physiology, Vol. 13Dynamic changes of hepatic microenvironment related to graft function in donation after cardiac death liver transplantationBeiLi, JingyaoLi, YulingZhang, ZhiqiangChu, LiZhang, QianJi2022 | European Journal of Radiology, Vol. 154Value of intravoxel incoherent motion and diffusion kurtosis imaging in predicting peritumoural infiltration of soft-tissue sarcoma: a prospective study based on MRI–histopathology comparisonsX.Li, Y.Liu, J.Tao, Z.Yin, Y.Zhu, Y.Zhang, S.Wang2021 | Clinical Radiology, Vol. 76, No. 7Investigating DWI changes in white matter of meningioma patients treated with proton therapyGiuliaBuizza, Marco AndreaZampini, GiuliaRiva, SilviaMolinelli, GiuliaFontana, SaraImparato, MarioCiocca, AlbertoIannalfi, EsterOrlandi, GuidoBaroni, ChiaraPaganelli2021 | Physica Medica, Vol. 84Low-frequency dominant electrical conductivity imaging of in vivo human brain using high-frequency conductivity at Larmor-frequency and spherical mean diffusivity without external injection currentGeon-HoJahng, Mun BaeLee, Hyung JoongKim, EungJe Woo, Oh-InKwon2021 | NeuroImage, Vol. 2252021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI)GloriaCruz2021Application of Field-of-View Optimized and Constrained Undistorted Single Shot (FOCUS) with Intravoxel Incoherent Motion (IVIM) in 3T in Locally Advanced Rectal CancerYipengCheng, HuijieJiang, HuiWang, QingchaoTang, TianyiLiu, ZhongjieShi2021 | Disease Markers, Vol. 2021Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRILauren AScott, Ben RDickie, Shelley DRawson, GrahamCoutts, Timothy LBurnett, Stuart MAllan, Geoff JMParker, Laura MParkes2021 | Journal of Cerebral Blood Flow & Metabolism, Vol. 41, No. 8Decomposition of high-frequency electrical conductivity into extracellular and intracellular compartments based on two-compartment model using low-to-high multi-b diffusion MRIMun BaeLee, Hyung JoongKim, Oh InKwon2021 | BioMedical Engineering OnLine, Vol. 20, No. 1The diagnostic value of intravoxel incoherent motion imaging in differentiating high-grade from low-grade gliomas: a systematic review and meta-analysisHechuanLuo, LingHe, WeiqinCheng, SijieGao2021 | The British Journal of Radiology, Vol. 94, No. 1121Role of intravoxel incoherent motion parameters in gastroesophageal cancer: relationship with 18F-FDG-positron emission tomography, computed tomography perfusion and magnetic resonance perfusion imaging parametersKhoschySCHAWKAT, Bert-RamSAH, Edwin E.TER VOERT, GasparDELSO, MoritzWURNIG, Anton S.BECKER, SebastianLEIBL, Paul M.SCHNEIDER, Cäcilia S.REINER, Martin W.HUELLNER, PatrickVEIT-HAIBACH2021 | The Quarterly Journal of Nuclear Medicine and Molecular Imaging, Vol. 65, No. 2Perfusion-driven Intravoxel Incoherent Motion (IVIM) MRI in Oncology: Applications, Challenges, and Future TrendsMamiIima2021 | Magnetic Resonance in Medical Sciences, Vol. 20, No. 2Statistical Evaluation of Different Mathematical Models for Diffusion Weighted Imaging of Prostate Cancer Xenografts in MiceHarriMerisaari, HanneLaakso, HeidiLiljenbäck, HelenaVirtanen, Hannu J.Aronen, HeikkiMinn, MattiPoutanen, AnneRoivainen, TimoLiimatainen, IvanJambor2021 | Frontiers in Oncology, Vol. 11Intravoxel Incoherent Motion Model in Differentiating the Pathological Grades of Esophageal Carcinoma: Comparison of Mono-Exponential and Bi-Exponential Fit ModelNianLiu, XiongxiongYang, LixingLei, KePan, QianqianLiu, XiaohuaHuang2021 | Frontiers in Oncology, Vol. 11Dynamic Contrast-Enhanced and Intravoxel Incoherent Motion MRI Biomarkers Are Correlated to Survival Outcome in Advanced Hepatocellular CarcinomaBang-BinChen, Yu-YunShao, Zhong-ZheLin, Chih-HungHsu, Ann-LiiCheng, ChiunHsu, Po-ChinLiang, Tiffany Ting-FangShih2021 | Diagnostics, Vol. 11, No. 8A simulation study investigating potential diffusion-based MRI signatures of microstrokesRafatDamseh, YuankangLu, XuecongLu, CongZhang, Paul J.Marchand, DenisCorbin, PhilippePouliot, FaridaCheriet, FredericLesage2021 | Scientific Reports, Vol. 11, No. 1Whole-lesion histogram analysis of mono-exponential and bi-exponential diffusion-weighted imaging in differentiating lung cancer from benign pulmonary lesions using 3 T MRIQ.Zhu, C.Ren, J.-J.Xu, M.-J.Li, H.-S.Yuan, X.-H.Wang2021 | Clinical Radiology, Vol. 76, No. 11Spectral diffusion analysis of kidney intravoxel incoherent motion MRI in healthy volunteers and patients with renal pathologiesJuliaStabinska, AlexandraLjimani, Helge JörnZöllner, EnricaWilken, ThomasBenkert, JulianeLimberg, IreneEsposito, GeraldAntoch, Hans‐JörgWittsack2021 | Magnetic Resonance in Medicine, Vol. 85, No. 6Comparison of Field-of-view Optimized and Constrained Undistorted Single Shot With Conventional Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Measurements of Diffusion and Perfusion in Vertebral Bone MarrowJibinCao, JingyiZhu, WengeSun, LinglingCui13 November 2020 | Journal of Computer Assisted Tomography, Vol. 45, No. 1Neuroimaging Techniques in Clinical PracticeDenisLe Bihan, Sebastian F.-X.Winklhofer2020Differentiation of prostate cancer and benign prostatic hyperplasia: comparisons of the histogram analysis of intravoxel incoherent motion and monoexponential model with in-bore MR-guided biopsy as pathological referenceYadongCui, ChunmeiLi, YingLiu, YuweiJiang, LuYu, MingLiu, WeiZhang, KainingShi, ChenZhang, JintaoZhang, MinChen2020 | Abdominal Radiology, Vol. 45, No. 10Differentiating atypical hemangiomas and vertebral metastases: a field-of-view (FOV) and FOCUS intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) studyJibinCao, SijiaGao, ChenyingZhang, YinxiaZhang, WengeSun, LinglingCui2020 | European Spine Journal, Vol. 29, No. 12Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation?FilippoPesapane, Matteo BasilioSuter, AnnaRotili, SilviaPenco, OlgaNigro, MartaCremonesi, MassimoBellomi, Barbara AlicjaJereczek-Fossa, GraziellaPinotti, EnricoCassano2020 | Medical Oncology, Vol. 37, No. 4MRI-guided vacuum-assisted breast biopsy: experience of a single tertiary referral cancer centre and prospects for the futureSilviaPenco, AnnaRotili, FilippoPesapane, ChiaraTrentin, ValeriaDominelli, AngelaFaggian, MariagiorgiaFarina, IreneMarinucci, AnnaBozzini, MariaPizzamiglio, Anna MariaIerardi, EnricoCassano2020 | Medical Oncology, Vol. 37, No. 5Multiple b-value diffusion-weighted imaging in differentiating benign from malignant breast lesions: comparison of conventional mono-, bi- and stretched exponential modelsB.-Y.Chen, Z.Xie, P.Nie, D.Yang, Y.-C.Hu, S.-T.Liu, G.-Q.Bao, J.Feng, J.Yu2020 | Clinical Radiology, Vol. 75, No. 8On the identification of the blood vessel confounding effect in intravoxel incoherent motion (IVIM) Diffusion-Weighted (DW)-MRI in liver: An efficient sparsity based algorithmJieLiu, GiulioGambarota, HuazhongShu, LongyuJiang, BenjaminLeporq, OlivierBeuf, AhmadKarfoul2020 | Medical Image Analysis, Vol. 61Potentialities of multi-b-values diffusion-weighted imaging for predicting efficacy of concurrent chemoradiotherapy in cervical cancer patientsBingLiu, Wan-LingMa, Guang-WenZhang, ZhenSun, Meng-QiWei, Wei-HuanHou, Bing-XinHou, Li-ChunWei, YiHuan2020 | BMC Medical Imaging, Vol. 20, No. 1Can the low and high b-value distribution influence the pseudodiffusion parameter derived from IVIM DWI in normal brain?Yu-ChuanHu, Lin-FengYan, YuHan, Shi-JunDuan, QianSun, Gang-FengLi, WenWang, Xiao-ChengWei, Dan-DanZheng, Guang-BinCui2020 | BMC Medical Imaging, Vol. 20, No. 1Diffusion-weighted magnetic resonance imaging of primary cervical cancer in the detection of sub-centimetre metastatic lymph nodesJose Angelo UdalPerucho, Keith Wan HangChiu, Esther Man FungWong, Ka YuTse, Mandy Man YeeChu, Lawrence Wing ChiChan, HerbertPang, Pek-LanKhong, Elaine Yuen PhinLee2020 | Cancer Imaging, Vol. 20, No. 1Extracellular electrical conductivity property imaging by decomposition of high-frequency conductivity at Larmor-frequency using multi-b-value diffusion-weighted imagingMun BaeLee, Geon-HoJahng, Hyung JoongKim, Eung JeWoo, Oh InKwon, QuanJiang2020 | PLOS ONE, Vol. 15, No. 4Comparative Study of Monoexponential, Intravoxel Incoherent Motion, Kurtosis, and IVIM-Kurtosis Models for the Diagnosis and Aggressiveness Assessment of Prostate CancerYingLiu, XuanWang, YadongCui, YuweiJiang, LuYu, MingLiu, WeiZhang, KainingShi, JintaoZhang, ChenZhang, ChunmeiLi, MinChen2020 | Frontiers in Oncology, Vol. 10Diffusion Kurtosis Imaging and Intravoxel Incoherent Motion in Differentiating Nasal MalignanciesZebinXiao, ZuohuaTang, ChunquanZheng, JianfengLuo, KeqingZhao, ZhongshuaiZhang2020 | The Laryngoscope, Vol. 130, No. 12Diffusion MRI for Assessment of Bone Quality; A Review of Findings in Healthy Aging and OsteoporosisAnahitaFathi Kazerooni, Jose M.Pozo, Eugene VincentMcCloskey, HamidrezaSaligheh Rad, Alejandro F.Frangi2020 | Journal of Magnetic Resonance Imaging, Vol. 51, No. 4Sequential PET/diffusion-weighted imaging in the evaluation of myocardial perfusion and viability in coronary artery disease: a preliminary studyXueyingLing, JianxinChen, JingjieShang, YongjinTang, YongCheng, HaoXu2020 | Nuclear Medicine Communications, Vol. 41, No. 1Usefulness of diffusion-weighted MRI in the initial assessment of osseous sarcomas in children and adolescentsAlaa N.Alsharief, ClaudiaMartinez-Rios, SevanHopyan, AfsanehAmirabadi, Andrea S.Doria, Mary-Louise C.Greer2019 | Pediatric Radiology, Vol. 49, No. 9IVIM with fractional perfusion as a novel biomarker for detecting and grading intestinal fibrosis in Crohn’s diseaseMeng-ChenZhang, Xue-HuaLi, Si-YunHuang, RenMao, Zhuang-NianFang, Qing-HuaCao, Zhong-WeiZhang, XuYan, Min-HuChen, Zi-PingLi, Can-HuiSun, Shi-TingFeng2019 | European Radiology, Vol. 29, No. 6Grading meningiomas using mono-exponential, bi-exponential and stretched exponential model-based diffusion-weighted MR imagingL.Lin, Y.Xue, Q.Duan, X.Chen, H.Chen, R.Jiang, T.Zhong, G.Xu, D.Geng, J.Zhang2019 | Clinical Radiology, Vol. 74, No. 8Multi-b-value diffusion weighted imaging for preoperative evaluation of risk stratification in early-stage endometrial cancerQiZhang, XiaoduoYu, MengLin, LizhiXie, MiaomiaoZhang, HanOuyang, XinmingZhao2019 | European Journal of Radiology, Vol. 119Intravoxel incoherent motion MR imaging for differentiating malignant lesions in spine: A pilot studyYanjunChen, QinqinYu, LucianaLa Tegola, YingjieMei, JialingChen, WenhuaHuang, XiaodongZhang, GiuseppeGuglielmi2019 | European Journal of Radiology, Vol. 120MR Imaging of Pediatric Musculoskeletal Tumors:Mi-JungLee, AvneeshChhabra, Joseph G.Pressey, Charles L.Dumoulin, Hee KyungKim2019 | Magnetic Resonance Imaging Clinics of North America, Vol. 27, No. 2Review of diffusion MRI studies in chronic white matter diseasesRajikhaRaja, GaryRosenberg, ArvindCaprihan2019 | Neuroscience Letters, Vol. 694Value of intravoxel incoherent motion for differential diagnosis of renal tumorsQingqiangZhu, WenrongZhu, JingYe, JingtaoWu, WenxinChen, ZhihuaHao2019 | Acta Radiologica, Vol. 60, No. 3Systemic Glucose Administration Alters Water Diffusion and Microvascular Blood Flow in Mouse Hypothalamic Nuclei – An fMRI StudyBlancaLizarbe, AntonioFernández-Pérez, VictorCaz, CarlotaLargo, MarioVallejo, PilarLópez-Larrubia, SebastiánCerdán2019 | Frontiers in Neuroscience, Vol. 13The added value of intravoxel incoherent motion diffusion weighted imaging parameters in differentiating high‑grade pancreatic neuroendocrine neoplasms from pancreatic ductal adenocarcinomaWanlingMa, MengqiWei, ZhiweiHan, YongqiangTang, QiPan, GuangwenZhang, JingRen, YiHuan, NaLi2019 | Oncology LettersMRI as a diagnostic biomarker for differentiating primary central nervous system lymphoma from glioblastoma: A systematic review and meta‐analysisChong HyunSuh, Ho SungKim, Seung ChaiJung, Ji EunPark, Choon
Referência(s)