Identification of amino acid residues important in the cyclization reactions of chalcone and stilbene synthases
2000; Portland Press; Volume: 350; Issue: 1 Linguagem: Inglês
10.1042/bj3500229
ISSN1470-8728
AutoresDae‐Yeon Suh, Kazuki FUKUMA, Junichi KAGAMI, Yasuyo Yamazaki, Masaaki Shibuya, Yutaka Ebizuka, Ushio Sankawa,
Tópico(s)Sirtuins and Resveratrol in Medicine
ResumoChalcone synthase (CHS) and stilbene synthase (STS) catalyse condensation reactions of p-coumaroyl-CoA and three C(2) units from malonyl-CoA up to a common tetraketide intermediate but then catalyse different cyclization reactions to produce naringenin chalcone and resveratrol respectively. On the basis of sequence alignment with other condensing enzymes including 3-ketoacyl-(acyl carrier protein) synthases of polyketide and fatty-acid synthases, site-directed mutagenesis was performed on the active-site G(372)FGPG loops in CHS and STS. The CHS-P375G mutant showed a 6-fold decrease in overall condensing activity with selectively increased production of p-coumaroyltriacetic acid lactone (CTAL, the derailment product of the tetraketide intermediate). Meanwhile, resveratrol production by STS-P(375)G strongly decreased to give various products in the order CTAL> resveratrol approximately bisnoryangonin>naringenin. As a result, naringenin production (cross-reaction) by STS-P(375)G was close to 30% of resveratrol production. Both G(374)L mutants of CHS and STS showed no condensing activity with residual malonyl-CoA decarboxylase activity. These results suggested that the G(372)FGPG loop in CHS and STS contribute to a determination of the outcome during cyclization reactions by serving as a part of the active-site scaffold on which the stereochemistry of cyclization is performed. These observations provide the first biochemical indication that cyclization reactions are modulated by active-site geometry. The implications for the evolutionary relationship of these enzymes are also discussed.
Referência(s)