Artigo Revisado por pares

Stomatal aperture and the sensing of the environment by guard cells

1979; Wiley; Volume: 2; Issue: 1 Linguagem: Inglês

10.1111/j.1365-3040.1979.tb00769.x

ISSN

1365-3040

Autores

D. W. Sheriff,

Tópico(s)

Plant responses to water stress

Resumo

Plant, Cell & EnvironmentVolume 2, Issue 1 p. 15-22 Stomatal aperture and the sensing of the environment by guard cells D. W. SHERIFF, D. W. SHERIFF Department of Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra City, ACT, 2601, Australia Forest Research Institute, Private Bag, Rotorua, New Zealand.Search for more papers by this author D. W. SHERIFF, D. W. SHERIFF Department of Environmental Biology, Research School of Biological Sciences, The Australian National University, Canberra City, ACT, 2601, Australia Forest Research Institute, Private Bag, Rotorua, New Zealand.Search for more papers by this author First published: March 1979 https://doi.org/10.1111/j.1365-3040.1979.tb00769.xCitations: 62 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Barthakur, N. (1976) Stomatal response to microwave induced thermal stresses. Journal of Microwave Power, 11, 247–254. Google Scholar Bickford, E. D. & Dunn, S. (1972) Lighting for Plant Growth. Kent State University Press. Google Scholar Bowling, D. J. F. (1976) Malate-switch hypothesis to explain the action of stomata. Nature, 262, 393–394. 10.1038/262393a0 CASWeb of Science®Google Scholar Brogårdh, T. (1975) Regulation of transpiration in Avena. Response to red and blue light steps. Physiologia Plantarum, 35, 303–309. 10.1111/j.1399-3054.1975.tb03910.x Web of Science®Google Scholar Brogårdh, T. & Johnsson, A. (1975) Regulation of transpiration in Avena. Responses to white light steps. Physiologia Plantarum, 35, 115–125. 10.1111/j.1399-3054.1975.tb03879.x Web of Science®Google Scholar Byott, G. S. & Sheriff, D. W. (1976) Water movement into and through Tradescantia virginiana (L.) leaves. II. Liquid flow pathways and evaporative sites. Journal of Experimental Botany, 27, 634–639. 10.1093/jxb/27.4.634 Web of Science®Google Scholar Caldwell, M. M. (1970) The effect of wind on stomatal aperture, photosynthesis, and transpiration of Rhododrendron ferrugineum L. and Pinus cembra L. Centralblatt für das Gesamte Fortwesen, 87, 193–201. PubMedWeb of Science®Google Scholar Cowan, I. R. (1977) Stomatal behaviour and environment. In: Advances in Botanical Research, 4 (Eds. R. D. Preston & H. W. Woolhouse), pp. 117–228. Academic Press, London . Google Scholar Cowan, I. R. & Farquhar, G. D. (1977) Stomatal function in relation to leaf metabolism and environment. In: Society for Experimental Biology Symposium 31, Integration of Activity in the Higher Plant (Ed. D. H. Jennings), pp. 471–505. Society for Experimental Biology, Cambridge . Google Scholar Darwin, F. (1898) Observations on stomata. Philosophical Transactions of the Royal Society B, 190, 531–622. 10.1098/rstb.1898.0009 Web of Science®Google Scholar Davies, W. J. & Kozlowski, T. T. (1974) Stomatal responses of five woody angiosperms to light and humidity. Canadian Journal of Botany, 52, 1525–1534. 10.1139/b74-201 Web of Science®Google Scholar Dittrich, P. & Raschke, K. (1977) Uptake and metabolism of carbohydrates by epidermal tissue. Planta, 134, 83–90. 10.1007/BF00390099 CASPubMedWeb of Science®Google Scholar Dittrich, P. & Mayer, M. (1978) Inhibition of stomatal opening during uptake of carbohydrate by guard cells in isolated epidermal tissues. Planta, 139, 167–170. 10.1007/BF00387143 CASPubMedWeb of Science®Google Scholar Drake, B. C., Raschke, K. & Salisbury, F. B. (1970) Temperature and transpiration resistances of Xanthium leaves as affected by air temperature, humidity and windspeed. Plant Physiology, 46, 324–330. 10.1104/pp.46.2.324 CASPubMedWeb of Science®Google Scholar During, H. (1976) Untersuchungen zur Umweltabhängigkeit der stomatären Transpiration bei Reben I. Beleuchtungsstärke und Luftfeuchtigkeit. Vitis, 15, 82–87. Google Scholar Edwards, M., Meidner, H. & Sheriff, D. W. (1976) Direct measurements of turgor pressure potentials of guard cells. II. The mechanical advantage of subsidiary cells, the Spannungsphase, and the optimum leaf water deficit Journal of Experimental Botany, 27, 163–171. 10.1093/jxb/27.1.163 Web of Science®Google Scholar Franke, W. (1962) Ektodesmenstudien I. Mitt. über pilzförmig erscheinende Ektodesmen. Kritische Abhandlung über das Wesen der Ektodesmen. Planta, 59, 222–238. 10.1007/BF01914009 Web of Science®Google Scholar Franke, W. (1967) Ektodesmen und die peristomätare Transpiration. Planta, 73, 138–154. 10.1007/BF00387027 CASPubMedWeb of Science®Google Scholar Gunar, I. I., Zlotnikova, I. F. & Panichkin, L. A. (1975) Electrophysiological investigation of cells of the stomate complex in spiderwort. Soviet Plant Physiology, 22, 704–707. Google Scholar Habermann, H. M. (1973) Evidence for two photoreactions and possible involvement of phytochrome in light-dependent stomatal opening. Plant Physiology, 51, 543–548. 10.1104/pp.51.3.543 CASPubMedWeb of Science®Google Scholar Hall, A. E. & Kaufmann, M. R. (1975) Regulation of water transport in the soil-plant-atmosphere continuum. In: Ecological Studies, 12 (Eds. D. M. Gates & R. B. Schmerl), pp. 187–202. Springer-Verlag, New York . Google Scholar Hall, A. E., Schulze, E. -D. & Lange, O. L. (1976) Current perspectives of steady-state stomatal responses to environment. In: Ecological Studies, 19 Water and Plant Life (Eds. O. L. Lange, L. Kappen & E. -D. Schulze), pp. 169–188. Springer-Verlag, Berlin . 10.1007/978-3-642-66429-8_11 Web of Science®Google Scholar Heath, O. V. S. (1950) The role of carbon dioxide in the light response of stomata I. Journal of Experimental Botany, 1, 29–62. 10.1093/jxb/1.1.29 Web of Science®Google Scholar Heath, O. V. S. & Meidner, H. (1957) Effects of carbon dioxide and temperature on stomata of Allium cepa L. Nature, 180, 181–182. 10.1038/180181a0 Web of Science®Google Scholar Heath, O. V. S. & Orchard, B. (1957) Temperature effects on the minimum intercellular space carbon dioxide concentration. Nature, 180, 180–181. 10.1038/180180a0 CASWeb of Science®Google Scholar Heath, O. V. S. & Russell, J. (1954) An investigation of the light responses of wheat stomata with the attempted elimination of control by the mesophyll. Part II. Interactions with carbon dioxide and general discussion. Journal of Experimental Botany, 5, 269–292. 10.1093/jxb/5.2.269 CASWeb of Science®Google Scholar Hofstra, G. & Hesketh, J. D. (1969) The effect of temperature on stomatal aperture in different species. Canadian Journal of Botany, 47, 1307–1310. 10.1139/b69-184 Web of Science®Google Scholar Hsiao, T. (1976) Stomatal ion transport. In: Encyclopedia of Plant Physiology, new series vol. 2, part B (Eds. U. Lüttge & M. G. Pitman), pp. 195–221. Springer-Verlag, Berlin . Google Scholar Hsiao, T. C., Allaway, W. G. & Evans, L. T. (1973) Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba. Plant Physiology, 51, 82–88. 10.1104/pp.51.1.82 CASPubMedWeb of Science®Google Scholar Johnson, S. W. (1868) How Crops Grow. New York. Google Scholar Johnsson, M., Issaias, S., Brogårdh, T. & Johnsson, A. (1976) Rapid, blue-light-induced transpiration response restricted to plants with grass-like stomata. Physiologia Plantarum, 36, 229–232. 10.1111/j.1399-3054.1976.tb04418.x Web of Science®Google Scholar Kana, T. M. & Miller, J. H. (1977) Effect of colored light on stomatal opening rates of Vicia faba L. Plant Physiology, 59, 181–183. 10.1104/pp.59.2.181 PubMedWeb of Science®Google Scholar Karvé, A. (1961) Die Wirkung verschiedener Lichtqualitäten auf die Offnungsbewegung der Stomata. Zeitschrift für Botanik, 49, 47–72. Google Scholar Kaufmann, M. R. (1976) Stomatal response of Engelmann Spruce to humidity, light, and water stress. Plant Physiology, 57, 898–901. 10.1104/pp.57.6.898 CASPubMedWeb of Science®Google Scholar Keerberg, H., Keerberg, O., Pärnik, T., Vill, J. & Värk, E. (1971) CO2 assimilation by Phaseolus and Aspidistra leaves under varying density of blue and red radiant flux. Photosynthetica, 5, 99–106. CASWeb of Science®Google Scholar Ketellapper, H. J. (1963) Stomatal physiology. Annual Review of Plant Physiology, 14, 249–270. 10.1146/annurev.pp.14.060163.001341 CASWeb of Science®Google Scholar Kuiper, P. J. C. (1964) Dependence upon wavelength of stomatal movement in epidermal tissue of Senecia odoris. Plant Physiology, 39, 952–955. 10.1104/pp.39.6.952 CASPubMedWeb of Science®Google Scholar Lange, O. L. (1975) Plant water relations. In: Fortschritte der Botanik, 37 (Eds. H. Ellenberg, K. Esser, H. Merxmüller, E. Schnepf & H. Ziegler), pp. 78–97. Springer-Verlag, Berlin . Google Scholar Lange, O. L., Lösch, R., Schulze, E. -D. & Kappen, L. (1971) Responses of stomata to changes in humidity. Planta, 100, 76–86. 10.1007/BF00386887 CASPubMedWeb of Science®Google Scholar Lange, O. L., Schulze, E. -D., Kappen, L., Buschbom, U. & Evenari, M. (1975) Photosynthesis of desert plants as influenced by internal and external factors. In: Ecological Studies, 12 (Eds. D. M. Gates & R. B. Schmerl), pp. 121–143. Springer-Verlag, New York . Google Scholar Lösch, R. (1977) Responses of stomata to environmental factors-experiments with isolated epidermal strips of Polypodium vulgare. I. Temperature and humidity. Oecologia, 29, 85–97. 10.1007/BF00345365 CASPubMedWeb of Science®Google Scholar Loveys, B. R. (1977) The intracellular location of abscisic acid in stressed and non-stressed leaf tissue. Physiologia Plantarum, 40, 6–10. 10.1111/j.1399-3054.1977.tb01483.x CASWeb of Science®Google Scholar Loveys, B. R. & Kriedmann, P. E. (1973) Rapid changes in abscisic acid-like inhibitors following alterations in vine leaf water potential. Physiologia Plantarum, 28, 476–479. 10.1111/j.1399-3054.1973.tb08592.x CASWeb of Science®Google Scholar Ludlow, M. M. & Jarvis, P. G. (1971) Photosynthesis in Sitka spruce [Picea sitchensis (Bong.) Carr.]. I. General characteristics. Journal of Applied Ecology, 8, 925–953. 10.2307/2402692 Web of Science®Google Scholar Mansfield, T. A. (1965a) Glycollic acid metabolism and the movements of stomata. Nature, 205, 617–618. 10.1038/205617a0 CASWeb of Science®Google Scholar Mansfield, T. A. (1965b) Stomatal opening in high temperature in darkness. Journal of Experimental Botany, 16, 721–731. 10.1093/jxb/16.4.721 Web of Science®Google Scholar Mansfield, T. A. (1971) Stomata: versatile sensory devices but difficult experimental subjets. Journal of Biological Education, 5, 115–123. 10.1080/00219266.1971.9653688 Google Scholar Mansfield, T. A. & Meidner, H. (1966) Stomatal opening in light of different wavelengths: effects of blue light independent of carbon-dioxide concentration. Journal of Experimental Botany, 17, 510–521. 10.1093/jxb/17.3.510 Web of Science®Google Scholar Meidner, H. (1968) The comparative effects of blue and red light on the stomata of Allium cepa L. and Xanthiutn pennsylvanicum. Journal of Experimental Botany, 19, 146–151. 10.1093/jxb/19.1.146 Web of Science®Google Scholar Meidner, H. (1975) Water supply, evaporation, and vapour diffusion in leaves. Journal of Experimental Botany, 26, 666–673. 10.1093/jxb/26.5.666 Web of Science®Google Scholar Meidner, H. & Heath, O. V. S. (1959) Stomatal responses to temperature and carbon dioxide concentration in Allium cepa L. and their relevance to midday closure. Journal of Experimental Botany, 10, 206–219. 10.1093/jxb/10.2.206 CASWeb of Science®Google Scholar Meidner, H. & Mansfield, T. A. (1968) Physiology of Stomata. McGraw-Hill, England . Google Scholar Meidner, H. & Willmer, C. (1975) Mechanics and metabolism of guard cells. Current Advances in Plant Science, 17, 1–15. Google Scholar Mouravieff, I. (1958) Action de la lúmière sur la cellule végétale. Bulletin de la Société Botanique de France, 105, 467–475. 10.1080/00378941.1958.10835187 CASGoogle Scholar Nadel, M. (1935) On the influence of various liquid fixatives on stomatal behaviour. Palestine Journal of Botany Rehovot Series, 1, 22–42. Google Scholar Neilson, R. E. & Jarvis, P. G. (1975) Photosynthesis in sitka spruce [Picea sitchensis (Bong.) Carr.)]. IV. Response of stomata to temperature. Journal of Applied Ecology, 12, 879–891. 10.2307/2402096 CASWeb of Science®Google Scholar Nelson, S. D. & Mayo, J. M. (1975) The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. Canadian Journal of Botany, 53, 1–7. 10.1139/b75-001 Web of Science®Google Scholar Osmond, C. B. (1978) Crassulacean Acid Metabolism: A curiosity in context. Annual Review of Plant Physiology, 29, 379–414. 10.1146/annurev.pp.29.060178.002115 CASWeb of Science®Google Scholar Pallaghy, C. K. (1968) Electrophysiological studies in guard cells of tobacco. Planta, 80, 147–153. 10.1007/BF00385590 Web of Science®Google Scholar Pallas, J. E. (1965) Transpiration and stomatal opening with changes in carbon dioxide content of the air. Science, 147, 171–173. 10.1126/science.147.3654.171 CASPubMedWeb of Science®Google Scholar Phillips, P. J. & McWilliam, J. R. (1971) Thermal responses of the primary carboxylating enzymes from C3 and C4 plants adapted to contrasting temperature environments. In: Photosynthesis and Photorespiration (Eds. M. D. Hatch, C. B. Osmond & R. O. Slatyer), pp. 97–104. Wiley & Sons, New York . Google Scholar Raschke, K. (1967) Der Einfluss von Rot und Blau Licht auf die öffnungs und Schliess Geschwindigkeit der Stomata von Zea mays. Naturwissenschaften, 54, 72–75. 10.1007/BF00592765 PubMedGoogle Scholar Raschke, K. (1970) Stomatal responses to pressure changes and interruptions in the water supply of detached leaves of Zea mays L. Plant Physiology, 45, 415–423. 10.1104/pp.45.4.415 CASPubMedWeb of Science®Google Scholar Raschke, K. (1974) Abscisic acid sensitizes stomata to CO2 in leaves of Xanthium strumarium L. Proceedings of the 8th International Conference on Plant Growth Regulators, Tokyo 1973, 1151–1158. Google Scholar Raschke, K. (1975) Stomatal action. Annual Review of Plant Physiology, 26, 309–340. 10.1146/annurev.pp.26.060175.001521 CASWeb of Science®Google Scholar Raschke, K. (1977) The stomatal turgor mechanism and its responses to CO2 and abscisic acid: observations and a hypothesis. In: Regulation of Cell Membrane Activities in Plants (Eds. E. Maree & O. Ciferri), pp. 173–83. Elsevier, Amsterdam . Google Scholar Razvi, H. A. (1937) Stomatal Movement in Some Succulents with Special Reference to Keleinia articulata. Some Experiments on Evaporation. Ph. D. Thesis, University College of North Wales, Bangor . Google Scholar Scarth, G. W. & Shaw, M. (1951) Stomatal movement and photosynthesis in Pelargonium I. Plant Physiology, 26, 207–225. 10.1104/pp.26.2.207 CASPubMedWeb of Science®Google Scholar Schönherr, J. & Bukovac, M. J. (1970) Preferential polar pathways in the cuticle and their relationship to ectodesmata. Planta, 92, 189–201. 10.1007/BF00388553 CASPubMedWeb of Science®Google Scholar Schulze, E. -D., Lange, O. L., Buschbom, U., Kappen, L. & Evenari, M. (1972) Stomatal responses to changes in humidity in plants growing in the desert. Planta, 108, 259–270. 10.1007/BF00384113 CASPubMedWeb of Science®Google Scholar Schulze, E. -D., Lange, O. L., Evenari, M., Kappen, L. & Buschbom, U. (1974) The role of air humidity and leaf temperature in controlling stomatal resistance of Prunus armeniaca L. under desert conditions. I. A simulation of the daily course of stomatal resistance. Oecologia, 17, 159–170. 10.1007/BF00346278 PubMedWeb of Science®Google Scholar Schulze, E. -D., Lange, O. L., Kappen, L., Evenari, M. & Buschbom, U. (1975) Physiological basis of primary production of perennial higher plants in the Negev desert. International Biological Programme, 3, 107–119. Google Scholar Sheriff, D. W. (1977a) Where is humidity sensed when stomata respond to it directly Annals of Botany, 41, 1083–1084. 10.1093/oxfordjournals.aob.a085382 Web of Science®Google Scholar Sheriff, D. W. (1977b) Evaporation sites and distillation in leaves. Annals of Botany, 41, 1081–1082. 10.1093/oxfordjournals.aob.a085381 Web of Science®Google Scholar Sheriff, D. W. (1977c) The effect of humidity on water uptake by, and viscous flow resistance of, excised leaves of a number of species: physiological and anatomical observations. Journal of Experimental Botany, 28, 1399–1407. 10.1093/jxb/28.6.1399 Web of Science®Google Scholar Sheriff, D. W. (1979) Water vapour and heat transfer in leaves. Annals of Botany. In Press. Google Scholar Sheriff, D. W. & Kaye, P. E. (1977) The response of diffusive conductance in wilted and unwilted Atriplex hastata L. leaves to humidity. Zeitschrift für Pflanzenphysiologie, 83, 463–466. 10.1016/S0044-328X(77)80053-6 Web of Science®Google Scholar Sheriff, D. W. & Meidner, H. (1974) Water pathways in leaves of Hedera helix L. and Tradescantia virginiana L. Journal of Experimental Botany, 25, 1147–1156. 10.1093/jxb/25.6.1147 Web of Science®Google Scholar Sheriff, D. W. & Meidner, H. (1975a) Water movement into and through Tradescantia virginiana L. leaves. I. Uptake during conditions of dynamic equilibrium. Journal of Experimental Botany, 26, 897–902. 10.1093/jxb/26.6.897 Web of Science®Google Scholar Sheriff, D. W. & Meidner, H. (1975b) Correlations between the unbound water content of guard cells and stomatal aperture in Tradescantia virginiana L. Journal of Experimental Botany, 26, 315–318. 10.1093/jxb/26.3.315 Web of Science®Google Scholar Thoday, D. (1938) Stomatal movement and epidermal water-content. Nature, 141, 164. 10.1038/141164b0 Google Scholar Thorpe, N. & Milthorpe, F. L. (1977) Stomatal metabolism: CO2 fixation and respiration. Australian Journal of Plant Physiology, 4, 611–621. CASWeb of Science®Google Scholar Treharne, K. J. & Nelson, C. J. (1975) Effect of growth temperature on photosynthetic and photo-respiratory activity in tall fescue. In: Environmental and Biological Control of Photosynthesis (Ed. by R. Marcelle), pp. 61–69. Dr W. Junk, The Hague . 10.1007/978-94-010-1957-6_7 Google Scholar Williams, W. T. (1950) Studies in stomatal behaviour. IV. The water relations of the epidermis. Journal of Experimental Botany, 1, 114–131. 10.1093/jxb/1.1.114 Web of Science®Google Scholar Willmer, C. M. & Rutter, J. C. (1977) Guard cell malic acid metabolism during stomatal movements. Nature, 269, 327–328. 10.1038/269327a0 CASWeb of Science®Google Scholar Wong, S. C., Cowan, I. R. & Farquhar, G. D. (1978) Leaf conductance in relation to assimilation in Eucalyptus pauciflora Sieb. ex Spreng. The influence of irradiance and partial pressure of CO2. Plant Physiology, 62, 670. 10.1104/pp.62.4.670 CASPubMedWeb of Science®Google Scholar Zeigler, E. & Hepler, P. K. (1977a) Light and stomatal function: blue light stimulates swelling of guard cell protoplasts. Science, 196, 887–889. 10.1126/science.196.4292.887 Web of Science®Google Scholar Zeigler, E., Moody, W., Hepler, P. & Varela, F. (1977b) Light-sensing membrane potentials in onion guard cells. Nature, 270, 270–271. 10.1038/270270a0 Web of Science®Google Scholar Zelitch, I. (1961) Biochemical control of stomatal opening in leaves. Proceedings of the National Academy of Sciences U. S. A., 47, 1423–1433. 10.1073/pnas.47.9.1423 CASPubMedWeb of Science®Google Scholar Zelitch, I. (1965) Environmental and biochemical control of stomatal movement in leaves. Biological Review, 40, 463–482. 10.1111/j.1469-185X.1965.tb00811.x Web of Science®Google Scholar Zelitch, I. (1969) Stomatal control. Annual Review of Plant Physiology, 20, 329–350. 10.1146/annurev.pp.20.060169.001553 CASWeb of Science®Google Scholar Citing Literature Volume2, Issue1March 1979Pages 15-22 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX