Revisão Revisado por pares

ALPHA, BETA AND GAMMA MOTONEURONS: FUNCTIONAL DIVERSITY IN THE MOTOR SYSTEM'S FINAL PATHWAY

2011; Imperial College Press; Volume: 10; Issue: 03 Linguagem: Inglês

10.1142/s0219635211002786

ISSN

1757-448X

Autores

Marin Manuel, Daniel Zytnicki,

Tópico(s)

Ion channel regulation and function

Resumo

Journal of Integrative NeuroscienceVol. 10, No. 03, pp. 243-276 (2011) ArticlesNo AccessALPHA, BETA AND GAMMA MOTONEURONS: FUNCTIONAL DIVERSITY IN THE MOTOR SYSTEM'S FINAL PATHWAYMARIN MANUEL and DANIEL ZYTNICKIMARIN MANUELDepartment of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USACorresponding author. and DANIEL ZYTNICKILaboratoire de Neurophysique et Physiologie, Université Paris Descartes, Institut des Neurosciences et de la Cognition, CNRS UMR 8119, Paris 75006, Francehttps://doi.org/10.1142/S0219635211002786Cited by:43 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractSince their discovery in the late 19th century our conception of motoneurons has steadily evolved. Motoneurons share the same general function: they drive the contraction of muscle fibers and are the final common pathway, i.e., the seat of convergence of all the central and peripheral pathways involved in motricity. However, motoneurons innervate different types of muscular targets. Ordinary muscle fibers are subdivided into three main subtypes according to their structural and mechanical properties. Intrafusal muscle fibers located within spindles can elicit either a dynamic, or a static, action on the spindle sensory endings. No less than seven categories of motoneurons have thereby been identified on the basis of their innervation pattern. This functional diversity has hinted at a similar diversity in the inputs each motoneuron receives, as well as in the electrical, or cellular, properties of the motoneurons that match the properties of their muscle targets. The notion of the diverse properties of motoneurons has been well established by the work of many prominent neuroscientists. But in today's scientific literature, it tends to fade and motoneurons are often thought of as a homogenous group, which develop from a given population of precursor cells, and which express a common set of molecules. We first present here the historical milestones that led to the recognition of the functional diversity of motoneurons. We then review how the intrinsic electrical properties of motoneurons are precisely tuned in each category of motoneurons in order to produce an output that is adapted to the contractile properties of their specific targets.Keywords:Spinal cordhistorical perspectiveelectrophysiological studiesphysiological types of motor unitsintrinsic properties of motoneuronsvoltage-dependent currents References M. N. Adal and D. Barker, J. Physiol. 177, 288 (1965). Crossref, Medline, ISI, Google ScholarR. Bakels and D. Kernell, J. Physiol. 463, 307 (1993). Crossref, Medline, ISI, Google Scholar Baldissera F, Hultborn H, Illert M, Integration in Spinal Neuronal Systems, Handbook of Physiology. The Nervous System. Motor Control, Am. Physiol. Soc., Bethesda, MD, 1981 . Google Scholar D. Barker , Handbook of Sensory Physiology ( Springer-Verlag , New York , 1974 ) . Google ScholarD. Barkeret al., J. Physiol. 266(3), 713 (1977). Crossref, Medline, ISI, Google ScholarD. Barkeret al., J. Physiol. 230(2), 405 (1973). Crossref, Medline, ISI, Google ScholarD. J. Bennettet al., J. Neurophysiol. 80(4), 2038 (1998). Crossref, Medline, ISI, Google ScholarD. J. Bennettet al., J. Neurophysiol. 80(4), 2023 (1998). Crossref, Medline, ISI, Google ScholarD. J. Bennett, Y. Li and M. Siu, J. Neurophysiol. 86(4), 1955 (2001). Crossref, Medline, ISI, Google ScholarP. Bessou, F. Emonet-Denand and Y. Laporte, Nature (Lond) 198, 594 (1963). Crossref, ISI, Google ScholarP. Bessou, F. Emonet-Denand and Y. Laporte, C R Hebd. Seances. Acad. Sci. 256, 5625 (1963). Medline, Google ScholarP. Bessou, F. Emonet-Denand and Y. Laporte, J. Physiol. 180(3), 649 (1965). Crossref, Medline, ISI, Google Scholar P. Bessou and Y. Laporte , Responses from the Same Neuromuscular Spindle of the Tenuissimus Muscle of the Cat. Symposium on Muscle Receptors ( Hong Kong University Press , Hong Kong , 1962 ) . Google ScholarP. Bessou, Y. Laporte and B. Pagès, J. Physiol. (Paris) 58(1), 31 (1966). Medline, Google ScholarP. Bessou and B. Pages, J. Physiol. 252(2), 397 (1975). Crossref, Medline, ISI, Google ScholarI. A. Boydet al., J. Physiol. 265(1), 133 (1977). Crossref, Medline, ISI, Google ScholarM. H. Brooke and K. K. Kaiser, Arch. Neurol. 23, 369 (1970), DOI: 10.1001/archneur.1970.00480280083010. Crossref, Medline, Google ScholarM. C. Brown and R. G. Butler, J. Physiol. 233(3), 553 (1973). Crossref, Medline, ISI, Google ScholarM. C. Brown, A. Crowe and P. B. Matthews, J. Physiol. 177, 140 (1965). Crossref, Medline, ISI, Google Scholar Brown MC, Matthews PB, On the Subdivision of the Efferent Fibres to Muscle Spindles into Static and Dynamic Fusimotor Fibres. Control and Innervation of Skeletal Muscle, Thomson, Dundee, 1966 . Google ScholarR. M. Brownstone, Prog. Neurobiol. 78(5), 156 (2006), DOI: 10.1016/j.pneurobio.2006.04.002. Crossref, Medline, ISI, Google ScholarR. M. Brownstoneet al., Exp. Brain. Res. 90(3), 441 (1992), DOI: 10.1007/BF00230927. Medline, ISI, Google Scholar R. E. Burke , Handbook of Physiology. The Nervous System ( Am. Physiol. Soc. , Bethesda, MD , 1981 ) . Google ScholarR. E. Burkeet al., J. Comp. Neurol. 209(1), 17 (1982), DOI: 10.1002/cne.902090103. Crossref, Medline, ISI, Google ScholarR. E. Burke and L. L. Glenn, J. Comp. Neurol. 372(3), 465 (1996). Crossref, Medline, ISI, Google ScholarR. E. Burkeet al., J. Physiol. 234(3), 723 (1973). Crossref, Medline, ISI, Google ScholarR. E. Burkeet al., Science 174, 709 (1971), DOI: 10.1126/science.174.4010.709. Crossref, Medline, ISI, Google ScholarR. E. Burke and P. Tsairis, J. Physiol. 234(3), 749 (1973). Crossref, Medline, ISI, Google ScholarR. E. Burke and P. Tsairis, Brain. Res. 129(2), 341 (1977), DOI: 10.1016/0006-8993(77)90013-0. Crossref, Medline, ISI, Google ScholarD. C. Buttonet al., J. Physiol. 573, 663 (2006), DOI: 10.1113/jphysiol.2006.107292. Crossref, Medline, ISI, Google ScholarC. Capaday, J. Neurosci. Methods 74(2), 201 (1997), DOI: 10.1016/S0165-0270(97)02250-4. Crossref, Medline, ISI, Google ScholarK. P. Carlinet al., Eur. J. Neurosci. 12(5), 1635 (2000), DOI: 10.1046/j.1460-9568.2000.00055.x. Crossref, Medline, ISI, Google ScholarR. I. Close, Physiol. Rev. 52(1), 129 (1972). Crossref, Medline, ISI, Google ScholarB. A. Conwayet al., J. Physiol. 405, 369 (1988). Crossref, Medline, ISI, Google ScholarJ. S. Coombs, D. R. Curtis and J. C. Eccles, J. Physiol. 139(2), 232 (1957). Crossref, Medline, ISI, Google ScholarJ. S. Coombs, J. C. Eccles and P. Fatt, J. Physiol. 130(2), 291 (1955). Crossref, Medline, ISI, Google ScholarS. Cooper, J. Exp. Physiol. 46, 389 (1961). Crossref, Medline, ISI, Google ScholarF. Cotelet al., J. Neurosci. 29(9), 2748 (2009), DOI: 10.1523/JNEUROSCI.3462-08.2009. Crossref, Medline, ISI, Google ScholarW. E. Crill, Annu. Rev. Physiol. 58, 349 (1996), DOI: 10.1146/annurev.ph.58.030196.002025. Crossref, Medline, ISI, Google ScholarC. Croneet al., J. Physiol. 405, 321 (1988). Crossref, Medline, ISI, Google ScholarJ. E. Desmedt and E. Godaux, Nature 267(5613), 717 (1977). Crossref, Medline, ISI, Google ScholarA. Duflocqet al., Mol. Cell. Neurosci. 39(2), 180 (2008), DOI: 10.1016/j.mcn.2008.06.008. Crossref, Medline, ISI, Google ScholarJ. C. Eccleset al., Acta. physiologica. Scandinavica. 50, 32 (1960), DOI: 10.1111/j.1748-1716.1960.tb02070.x. Crossref, Medline, Google ScholarJ. C. Eccles, R. M. Eccles and A. Lundberg, J. Physiol. 142(2), 275 (1958). Crossref, Medline, ISI, Google ScholarJ. C. Eccles and C. S. Sherrington, Proc. R. Soc. B(106), 326 (1930). Google Scholar V. R. Edgerton , R. R. Roy and G. R. Chalmers , The Segmental Motor System , eds. M. D. Binder and L. M. Mendell ( Oxford University Press , 1990 ) . Google ScholarL. Edström and E. Kugelberg, J. Neurol. Neurosurg. Psychiat. 31, 424 (1968). Crossref, Medline, Google ScholarS. M. Elbasiouny, J. E. Schuster and C. J. Heckman, Clin. Neurophysiol. 121(10), 1669 (2010). Crossref, Medline, ISI, Google ScholarF. Emonet-Denand, E. Jankowska and Y. Laporte, J. Physiol. 210(3), 669 (1970). Crossref, Medline, ISI, Google ScholarF. Emonet-Denand and Y. Laporte, J. Neurophysiol. 38(6), 1390 (1975). Crossref, Medline, ISI, Google ScholarF. Emonet-Denand, J. Petit and Y. Laporte, J. Physiol. 458, 519 (1992). Crossref, Medline, ISI, Google ScholarJ. Erlanger, G. H. Bishop and H. S. Gasser, Am. J. Physiol. 78, 574 (1926). Crossref, ISI, Google ScholarP. Feiereisen, J. Duchateau and K. Hainaut, Exp. Brain Res. Experimentelle Hirnforschung. Experimentation Cerebrale 114(1), 117 (1997), DOI: 10.1007/PL00005610. Crossref, Google ScholarK. Fouadet al., J. Neurophysiol. 104(6), 2975 (2010), DOI: 10.1152/jn.00499.2010. Crossref, Medline, ISI, Google ScholarM. Gorassiniet al., J. Neurophysiol. 87(4), 1850 (2002). Crossref, Medline, ISI, Google Scholar R. Granit , The Basis of Motor Control ( Academic Press , London and New York , 1970 ) . Google ScholarP. A. Guertin and J. Hounsgaard, Neuroscience 88(2), 353 (1999), DOI: 10.1016/S0306-4522(98)00371-6. Crossref, Medline, ISI, Google ScholarB. Gustafsson and M. J. Pinter, J. Physiol. 357, 453 (1984). Crossref, Medline, ISI, Google ScholarB. Gustafsson and M. J. Pinter, J. Physiol. 356, 401 (1984). Crossref, Medline, ISI, Google ScholarB. Gustafsson and M. J. Pinter, Brain. Res. 326(2), 392 (1985), DOI: 10.1016/0006-8993(85)90053-8. Crossref, Medline, ISI, Google ScholarB. Gustafsson and M. J. Pinter, Trends. Neurosci. 8, 431 (1985), DOI: 10.1016/0166-2236(85)90152-3. Crossref, ISI, Google ScholarD. W. Harkeret al., J. Neurophysiol. 40(4), 791 (1977). Crossref, Medline, ISI, Google ScholarP. J. Harveyet al., J. Neurophysiol. 96(3), 1158 (2006), DOI: 10.1152/jn.01088.2005. Crossref, Medline, ISI, Google ScholarP. J. Harveyet al., J. Neurophysiol. 96(3), 1141 (2006), DOI: 10.1152/jn.00335.2005. Crossref, Medline, ISI, Google Scholar Heckman CJ, Enoka R, The motor unit, Comprehensive Physiology, in press . Google ScholarC. J. Heckmanet al., Clin. Neurophysiol. 120(12), 2040 (2009), DOI: 10.1016/j.clinph.2009.08.009. Crossref, Medline, ISI, Google ScholarE. Henneman, G. Somjen and D. O. Carpenter, J. Neurophysiol. 28, 560 (1965). Crossref, Medline, ISI, Google Scholar B. Hille , Ion Channels of Excitable Membranes , 3rd edn. ( Sinauer , Sunderland, Mass , 2001 ) . Google ScholarJ. Hounsgaardet al., Exp. Brain. Res. 55(2), 391 (1984), DOI: 10.1007/BF00237290. Medline, ISI, Google ScholarJ. Hounsgaardet al., J. Physiol. 405, 345 (1988). Crossref, Medline, ISI, Google ScholarJ. Hounsgaard and O. Kiehn, J. Physiol. 414, 265 (1989). Crossref, Medline, ISI, Google ScholarJ. Hounsgaard and O. Kiehn, J. Physiol. 468, 245 (1993). Crossref, Medline, ISI, Google ScholarJ. Hounsgaard and I. Mintz, J. Physiol. 398, 591 (1988). Crossref, Medline, ISI, Google ScholarM. Hulliger, Rev. Physiol. Biochem. Pharmacol. 101, 1 (1984), DOI: 10.1007/BFb0027694. Medline, ISI, Google ScholarC. C. Hunt, J. Gen. Physiol. 38, 117 (1954), DOI: 10.1085/jgp.38.1.117. Crossref, Medline, ISI, Google ScholarC. C. Hunt and S. W. Kuffler, J. Physiol. 113(3), 283 (1951). Crossref, Medline, ISI, Google ScholarB. Hutcheon, R. M. Miura and E. Puil, J. Neurophysiol. 76(2), 683 (1996). Crossref, Medline, ISI, Google ScholarB. Hutcheon and Y. Yarom, Trends Neurosci. 23(5), 216 (2000), DOI: 10.1016/S0166-2236(00)01547-2. Crossref, Medline, ISI, Google ScholarC. Iglesiaset al., J. Neurosci. 31(15), 5829 (2011), DOI: 10.1523/JNEUROSCI.6363-10.2011. Crossref, Medline, ISI, Google ScholarM. Ito and T. Oshima, J. Physiol. 180(3), 607 (1965). Crossref, Medline, ISI, Google ScholarL. Jamiet al., Acta. Physiologica. Scandinavica. 103(3), 284 (1978), DOI: 10.1111/j.1748-1716.1978.tb06216.x. Crossref, Medline, Google ScholarL. Jamiet al., Brain. Res. 164, 53 (1979), DOI: 10.1016/0006-8993(79)90005-2. Crossref, Medline, ISI, Google ScholarL. Jami, K. S. Murthy and J. Petit, J. Physiol. 325, 125 (1982). Crossref, Medline, ISI, Google ScholarE. Jankowska, Prog. Neurobiol. 38(4), 335 (1992), DOI: 10.1016/0301-0082(92)90024-9. Crossref, Medline, ISI, Google ScholarK. E. Joneset al., Exp. Brain Res. Experimentelle Hirnforschung. Experimentation Cerebrale 100(3), 503 (1994), DOI: 10.1007/BF02738409. Crossref, Google ScholarS. M. Jones and R. H. Lee, J. Neurophysiol. 96(5), 2200 (2006), DOI: 10.1152/jn.00537.2006. Crossref, Medline, ISI, Google ScholarK. Kanda, R. E. Burke and B. Walmsley, Exp. Brain. Res. 29(1), 57 (1977), DOI: 10.1007/BF00236875. Medline, ISI, Google ScholarK. C. Kanning, A. Kaplan and C. E. Henderson, Annu. Rev. Neurosci. 33, 409 (2010), DOI: 10.1146/annurev.neuro.051508.135722. Crossref, Medline, ISI, Google ScholarR. E. Kemm and D. R. Westbury, J. Physiol. 282, 59 (1978). Crossref, Medline, ISI, Google ScholarD. Kernell, Acta. Physiologica. Scandinavica. 65(2), 87 (1965), DOI: 10.1111/j.1748-1716.1965.tb04252.x. Crossref, Google Scholar D. Kernell , Muscular Afferents and Motor Control , ed. R. Granit ( Almqvist & Wiksell , 1966 ) . Google Scholar D. Kernell , The Motoneurone and its Muscle Fibres, Volume 50 of Monographs of the Physiological Society ( Oxford University Press , Oxford, New York , 2006 ) . Crossref, Google ScholarG. L. Kidd, Nature (Lond) 203, 1248 (1964). Crossref, Medline, ISI, Google ScholarO. Kiehn and T. Eken, J. Neurophysiol. 78(6), 3061 (1997). Crossref, Medline, ISI, Google ScholarO. Kjaerulff and O. Kiehn, J. Neurophysiol. 85(2), 580 (2001). Crossref, Medline, ISI, Google ScholarA. Kölliker, Z. Wiss. Zool. 12, 149 (1862). Google ScholarS. W. Kuffler and C. C. Hunt, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30, 24 (1952). Medline, Google ScholarS. W. Kuffler, C. C. Hunt and J. P. Quilliam, J. Neurophysiol. 14(1), 29 (1951). Crossref, Medline, ISI, Google ScholarW. Kühne, Virchows. Arch. Path. Anat. Physiol. 28, 528 (1863). Crossref, Google ScholarJ. J. Kuoet al., J. Physiol. 574, 819 (2006), DOI: 10.1113/jphysiol.2006.107094. Crossref, Medline, ISI, Google ScholarJ. N. Langley, J. Physiol. 56(5), 382 (1922). Crossref, Medline, Google ScholarR. H. Lee and C. J. Heckman, J. Neurophysiol. 80(2), 583 (1998). Crossref, Medline, ISI, Google ScholarR. H. Lee and C. J. Heckman, J. Neurophysiol. 80(2), 572 (1998). Crossref, Medline, ISI, Google ScholarR. H. Lee and C. J. Heckman, J. Neurophysiol. 81(5), 2164 (1999). Crossref, Medline, ISI, Google ScholarR. H. Lee and C. J. Heckman, J. Neurosci. 20(17), 6734 (2000). Crossref, Medline, ISI, Google ScholarR. H. Lee and C. J. Heckman, J. Neurophysiol. 85(1), 472 (2001). Crossref, Medline, ISI, Google ScholarL. Leksell, Acta. Physiologica. Scandinavica. 10(), 1 (1945). Google ScholarX. Liet al., J. Neurophysiol. 97(2), 1236 (2007), DOI: 10.1152/jn.00995.2006. Crossref, Medline, ISI, Google ScholarY. Li and D. J. Bennett, J. Neurophysiol. 90(2), 857 (2003), DOI: 10.1152/jn.00236.2003. Crossref, Medline, ISI, Google ScholarY. Li, M. A. Gorassini and D. J. Bennett, J. Neurophysiol. 91(2), 767 (2004), DOI: 10.1152/jn.00788.2003. Crossref, Medline, ISI, Google ScholarE. G. T. Liddel and C. S. Sherrington, Proc. R. Soc. London. B(97), 488 (1925). Google Scholar M. Manuel and C. J. Heckman , J. Neurosci. . Google ScholarM. Manuelet al., J. Neurosci. 29(36), 11246 (2009), DOI: 10.1523/JNEUROSCI.3260-09.2009. Crossref, Medline, ISI, Google ScholarM. Manuelet al., J. Neurosci. 25(39), 8917 (2005), DOI: 10.1523/JNEUROSCI.2154-05.2005. Crossref, Medline, ISI, Google ScholarM. Manuelet al., J. Physiol. 576, 873 (2006), DOI: 10.1113/jphysiol.2006.117002. Crossref, Medline, ISI, Google ScholarM. Manuelet al., J. Neurosci. 27(47), 12977 (2007), DOI: 10.1523/JNEUROSCI.3299-07.2007. Crossref, Medline, ISI, Google ScholarB. H. C. Matthews, J. Physiol. 78, 1 (1933). Crossref, Medline, Google ScholarP. B. Matthews, J. Physiol. 168, 660 (1963). Crossref, Medline, ISI, Google ScholarP. B. Matthews, Physiol. Rev. 44, 219 (1964). Crossref, Medline, ISI, Google Scholar P. B. C. Matthews , Mammalian Muscle Receptors and Their Central Actions. Monographs of the Physiological Society ( Edward Arnold , London , 1972 ) . Google ScholarJ. G. Mclarnon, Prog. Neurobiol. 47(6), 513 (1995). Crossref, Medline, ISI, Google ScholarC. F. Meehanet al., Acta. Physiol. (Oxf.) 200(4), 361 (2010), DOI: 10.1111/j.1748-1716.2010.02188.x. Crossref, Medline, ISI, Google ScholarC. F. Meehanet al., J. Neurophysiol. 103(5), 2599 (2010), DOI: 10.1152/jn.00668.2009. Crossref, Medline, ISI, Google ScholarL. M. Mendell and E. Henneman, Science 160(823), 96 (1968), DOI: 10.1126/science.160.3823.96. Crossref, Medline, ISI, Google ScholarG. B. Mileset al., Proc. Natl. Acad. Sci. USA. 104(7), 2448 (2007), DOI: 10.1073/pnas.0611134104. Crossref, Medline, ISI, Google ScholarJ. F. Milleret al., J. Neurophysiol. 75(2), 620 (1996). Crossref, Medline, ISI, Google ScholarA. T. Moritzet al., J. Neurophysiol. 98(2), 1042 (2007), DOI: 10.1152/jn.01294.2006. Crossref, Medline, ISI, Google ScholarJ. F. Perrier and F. Cotel, J. Physiol. 586(5), 1233 (2008), DOI: 10.1113/jphysiol.2007.145706. Crossref, Medline, ISI, Google ScholarJ. F. Perrier and R. Delgado-Lezama, J. Neurosci. 25(35), 7993 (2005), DOI: 10.1523/JNEUROSCI.1957-05.2005. Crossref, Medline, ISI, Google ScholarJ. F. Perrier and J. Hounsgaard, J. Neurophysiol. 82(2), 730 (1999). Crossref, Medline, ISI, Google ScholarJ. F. Perrier and J. Hounsgaard, J. Neurophysiol. 89(2), 954 (2003), DOI: 10.1152/jn.00753.2002. Crossref, Medline, ISI, Google ScholarR. K. Powers and M. D. Binder, Rev. Physiol. Biochem. Pharmacol. 143, 137 (2001), DOI: 10.1007/BFb0115594. Crossref, Medline, ISI, Google ScholarR. K. Powers and M. D. Binder, J. Neurophysiol. 89(1), 615 (2003), DOI: 10.1152/jn.00241.2002. Crossref, Medline, ISI, Google ScholarE. Puil, B. Gimbarzevsky and R. M. Miura, J. Neurophysiol. 55(5), 995 (1986). Crossref, Medline, ISI, Google ScholarK. A. Quinlanet al., J. Physiol. 589, 2245 (2011), DOI: 10.1113/jphysiol.2010.200659. Crossref, Medline, ISI, Google ScholarW. Rall, Biophys. J. 9(12), 1483 (1969). Crossref, Medline, ISI, Google ScholarL. Ranvier, Arch. Physiol. Norm. Pathol. 1, 5 (1874). Google ScholarJ. C. Rothwell, J. Neurosci. Methods 74, 113 (1997), DOI: 10.1016/S0165-0270(97)02242-5. Crossref, Medline, ISI, Google ScholarP. Sah, Trends. Neurosci. 19(4), 150 (1996), DOI: 10.1016/S0166-2236(96)80026-9. Crossref, Medline, ISI, Google ScholarS. Schiaffino and C. Reggiani, Physiol. Rev. 76, 371 (1996). Crossref, Medline, ISI, Google ScholarP. Schwindt and W. E. Crill, Brain. Res. 120(1), 173 (1977), DOI: 10.1016/0006-8993(77)90510-8. Crossref, Medline, ISI, Google ScholarP. C. Schwindt and W. E. Crill, J. Neurophysiol. 43(6), 1700 (1980). Crossref, Medline, ISI, Google ScholarS. D. Scutter and K. S. Turker, Muscle. Nerve. 21(10), 1290 (1998). Crossref, Medline, ISI, Google Scholar J. L. Smith , G. Blinston and W. K. Ovalle , Control of Posture and Locomotion ( Plenum , New York , 1973 ) . Google ScholarV. V. Turkinet al., J. Neurophysiol. 104(3), 1549 (2010), DOI: 10.1152/jn.00379.2010. Crossref, Medline, ISI, Google ScholarM. Umemiya and A. J. Berger, J. Neurosci. 14(9), 5652 (1994). Crossref, Medline, ISI, Google ScholarF. Viana, D. A. Bayliss and A. J. Berger, J. Neurophysiol. 69(6), 2150 (1993). Crossref, Medline, ISI, Google Scholar Westbury DR, Electrophysiological Characteristics of Spinal Gamma Motoneurons in the Cat. Muscle Receptors and Movement, Macmillan, London and Basingstoke, 1981 . Google ScholarD. R. Westbury, J. Physiol. 325, 79 (1982). Crossref, Medline, ISI, Google ScholarR. B. Wuerker, A. M. Mcphedran and E. Henneman, J. Neurophysiol. 28, 85 (1965). Crossref, Medline, ISI, Google ScholarJ. E. Zengelet al., J. Neurophysiol. 53(5), 1323 (1985). Crossref, Medline, ISI, Google ScholarL. Zhang and K. Krnjevic, Neurosci. Lett. 74(1), 58 (1987), DOI: 10.1016/0304-3940(87)90051-6. Crossref, Medline, ISI, Google ScholarD. Zytnickiet al., J. Neurophysiol. 64(5), 1380 (1990). Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 43ERR2 and ERR3 promote the development of gamma motor neuron functional properties required for proprioceptive movement controlMudassar N. Khan, Pitchaiah Cherukuri, Francesco Negro, Ashish Rajput and Piotr Fabrowski et al.21 December 2022 | PLOS Biology, Vol. 20, No. 12Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseasesLéa Lescouzères, Benoît Bordignon and Pascale Bomont20 September 2022 | Frontiers in Molecular Neuroscience, Vol. 15Differential Effects of Invasive Anodal Trans-spinal Direct Current Stimulation on Monosynaptic Excitatory Postsynaptic Potentials, Ia Afferents Excitability, and Motoneuron Intrinsic Properties Between Superoxide Dismutase Type-1 Glycine to Alanine Substitution at Position 93 and Wildtype MiceTomasz Jankowiak, Marcin Cholewiński and Marcin Bączyk1 Aug 2022 | Neuroscience, Vol. 498The electrophysiological properties of hindlimb motoneurons do not differ between male and female ratsHanna Drzymała‐Celichowska, Jan Celichowski, Marcin Bączyk and Piotr Krutki30 June 2022 | European Journal of Neuroscience, Vol. 56, No. 3The Cell Autonomous and Non-Cell Autonomous Aspects of Neuronal Vulnerability and Resilience in Amyotrophic Lateral SclerosisChristoph Schweingruber and Eva Hedlund8 August 2022 | Biology, Vol. 11, No. 8A review of motor neural system robotic modeling approaches and instrumentsAlexander S. Migalev, Kristina D. Vigasina and Pavel M. Gotovtsev18 January 2022 | Biological Cybernetics, Vol. 116, No. 3A model for self-organization of sensorimotor function: the spinal monosynaptic loopJonas M. D. Enander, Adam M. Jones, Matthieu Kirkland, Jordan Hurless and Henrik Jörntell et al.1 Jun 2022 | Journal of Neurophysiology, Vol. 127, No. 6Diversity of Mammalian Motoneurons and Motor UnitsMarcin Bączyk, Marin Manuel, Francesco Roselli and Daniel Zytnicki7 September 2022Ia EPSPs in rat spinal motoneurons are potentiated after a 5-week whole body vibrationPiotr Krutki, Włodzimierz Mrówczyński, Jan Celichowski and Marcin Bączyk1 Jan 2022 | Journal of Applied Physiology, Vol. 132, No. 1Normal Development and Pathology of Motoneurons: Anatomy, Electrophysiological Properties, Firing Patterns and Circuit ConnectivityJoshua I. Chalif and George Z. Mentis7 September 2022Control of Mammalian Locomotion by Somatosensory FeedbackAlain Frigon, Turgay Akay and Boris I. Prilutsky29 December 2021Single nucleus RNA-sequencing defines unexpected diversity of cholinergic neuron types in the adult mouse spinal cordMor R. Alkaslasi, Zoe E. Piccus, Sangeetha Hareendran, Hanna Silberberg and Li Chen et al.30 April 2021 | Nature Communications, Vol. 12, No. 1Muscle spindle function in healthy and diseased muscleStephan Kröger and Bridgette Watkins7 January 2021 | Skeletal Muscle, Vol. 11, No. 1Motoneuron‐specific loss of VAChT mimics neuromuscular defects seen in congenital myasthenic syndromeJulliane V. Joviano‐Santos, Ornela Kljakic, Matheus P. S. Magalhães‐Gomes, Priscila Aparecida C. Valadão and Leonardo R. Oliveira et al.25 April 2021 | The FEBS Journal, Vol. 288, No. 18Structural and Biological Basis for ProprioceptionJosé A. Vega and Juan Cobo23 June 2021Cytokine profile and glial activation following brachial plexus roots avulsion injury in miceKe Zhong, Yingqin Li, Ying Tang, Guangyin Yu and Prince Last Mudenda Zilundu et al.1 Apr 2021 | Journal of Neuroimmunology, Vol. 353Proprioception: a sense to facilitate actionKyle P. Blum, Christopher Versteeg, Joseph Sombeck, Raeed H. Chowdhury and Lee E. Miller1 Jan 2021Polarity-dependent adaptations of motoneuron electrophysiological properties after 5-wk transcutaneous spinal direct current stimulation in ratsMarcin Bączyk, Hanna Drzymała-Celichowska, Włodzimierz Mrówczyński and Piotr Krutki1 Oct 2020 | Journal of Applied Physiology, Vol. 129, No. 4Diabetes Mellitus-Related Dysfunction of the Motor SystemKen Muramatsu11 October 2020 | International Journal of Molecular Sciences, Vol. 21, No. 20Motoneuronal Spinal Circuits in Degenerative Motoneuron DiseaseMélanie Falgairolle and Michael J. O'Donovan25 May 2020 | Frontiers in Molecular Neuroscience, Vol. 13Increased shoulder muscle stretch reflex elicitability in supine subject postureLars N. Heinke, Axel J. Knicker and Kirsten Albracht20 May 2020 | Isokinetics and Exercise Science, Vol. 28, No. 2Long‐lasting modifications of motoneuron firing properties by trans‐spinal direct current stimulation in ratsMarcin Bączyk, Hanna Drzymała‐Celichowska, Włodzimierz Mrówczyński and Piotr Krutki24 November 2019 | European Journal of Neuroscience, Vol. 51, No. 8Hypogravity reduces trunk admittance and lumbar muscle activation in response to external perturbationsEnrico De Martino, Sauro E. Salomoni, Andrew Winnard, Kristofor McCarty and Kirsty Lindsay et al.1 Apr 2020 | Journal of Applied Physiology, Vol. 128, No. 4ERRγ is downregulated in injured motor neuron subpopulations following brachial plexus root avulsionGuangyin Yu, Prince Zilundu, Linlin Liu, Ke Zhong and Ying Tang et al.18 November 2019 | Experimental and Therapeutic Medicine, Vol. 88Multiscale modeling of the neuromuscular system: Coupling neurophysiology and skeletal muscle mechanicsOliver Röhrle, Utku Ş. Yavuz, Thomas Klotz, Francesco Negro and Thomas Heidlauf24 June 2019 | WIREs Systems Biology and Medicine, Vol. 11, No. 6Analysis of Motor Function in Amyloid Precursor-Like Protein 2 Knockout Mice: The Effects of Ageing and SexPhan H. Truong, Giuseppe D. Ciccotosto and Roberto Cappai25 October 2018 | Neurochemical Research, Vol. 44, No. 6Motoneuron firing properties are modified by trans-spinal direct current stimulation in ratsM. Bączyk, H. Drzymała-Celichowska, W. Mrówczyński and P. Krutki1 May 2019 | Journal of Applied Physiology, Vol. 126, No. 5Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypesMarin Manuel and Daniel Zytnicki1 Apr 2019 | Current Opinion in Physiology, Vol. 8Diversity of neurons and circuits controlling the speed and coordination of locomotionEva Rebecka Björnfors, Laurence D Picton, Jianren Song and Abdeljabbar El Manira1 Apr 2019 | Current Opinion in Physiology, Vol. 8V2a interneuron diversity tailors spinal circuit organization to control the vigor of locomotor movementsJianren Song, Elin Dahlberg and Abdeljabbar El Manira22 August 2018 | Nature Communications, Vol. 9, No. 1Perspectives on the modeling of the neuromusculoskeletal system to investigate the influence of neurodegenerative diseases on sensorimotor controlLeonardo Abdala Elias, Débora Elisa da Costa Matoso, Renato Naville Watanabe and André Fabio Kohn17 May 2018 | Research on Biomedical Engineering, Vol. 34, No. 2Escape from homeostasis: spinal microcircuits and progression of amyotrophic lateral sclerosisRobert M. Brownstone and Camille Lancelin1 May 2018 | Journal of Neurophysiology, Vol. 119, No. 5Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha MotoneuronesSian Irvine and Jessica Kwok12 April 2018 | International Journal of Molecular Sciences, Vol. 19, No. 4One minute static stretch of plantar flexors transiently increases H reflex excitability and exerts no effect on corticospinal pathwaysFrancesco Budini, Eugen Gallasch, Monica Christova, Dietmar Rafolt and Andreas Benedikt Rauscher et al.30 June 2017 | Experimental Physiology, Vol. 102, No. 8Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditionsBabak V-Ghaffari, M. Kouhnavard, Sherif M. Elbasiouny and Gennady Cymbalyuk7 June 2017 | PLOS ONE, Vol. 12, No. 6Emergence of gamma motor activity in an artificial neural network model of the corticospinal systemBernard Grandjean and Marc A Maier27 September 2016 | Journal of Computational Neuroscience, Vol. 42, No. 1Soleus H-reflex modulation during balance recovery after forward fallingDimitrios A. Patikas, Falk Mersmann, Sebastian Bohm, Arno Schroll and Robert Marzilger et al.1 September 2016 | Muscle & Nerve, Vol. 54, No. 5Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneuronsConstanze Lenschow, Jean-René Cazalets and Sandrine S. Bertrand22 June 2016 | Scientific Reports, Vol. 6, No. 1Intrinsic excitability differs between murine hypoglossal and spinal motoneuronsM. A. Tadros, A. J. Fuglevand, A. M. Brichta and R. J. Callister1 May 2016 | Journal of Neurophysiology, Vol. 115, No. 5Enhanced Muscle Afferent Signals during Motor Learning in HumansMichael Dimitriou1 Apr 2016 | Current Biology, Vol. 26, No. 8Motor Neuron Differentiation from Pluripotent Stem Cells: Development of the Technique, Synopsis of Protocols, and Summary of Current ApplicationsHelen Cristina Miranda and Albert R. La Spada5 August 2016Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and DiseaseRefik Kanjhan, Peter G. Noakes and Mark C. Bellingham1 Jan 2016 | Neural Plasticity, Vol. 2016Method of automatic recognition and other solutions used in new computer program for full decomposition of EMG signalsDariusz Młoźniak and Maria Piotrkiewicz1 Jan 2015 | Biocybernetics and Biomedical Engineering, Vol. 35, No. 1 Recommended Vol. 10, No. 03 Metrics History Received 30 March 2011 Accepted 7 April 2011 KeywordsSpinal cordhistorical perspectiveelectrophysiological studiesphysiological types of motor unitsintrinsic properties of motoneuronsvoltage-dependent currentsPDF download

Referência(s)