Artigo Acesso aberto Revisado por pares

Comparing the Impact of Environmental Factors During Very High Gravity Brewing Fermentations

2011; Wiley; Volume: 117; Issue: 3 Linguagem: Inglês

10.1002/j.2050-0416.2011.tb00480.x

ISSN

2050-0416

Autores

Luis F. Lima, Tiago Brandão, Nelson Lima, J. A. Teixeira,

Tópico(s)

Biofuel production and bioconversion

Resumo

Journal of the Institute of BrewingVolume 117, Issue 3 p. 359-367 Free Access Comparing the Impact of Environmental Factors During Very High Gravity Brewing Fermentations Luis Lima, Corresponding Author Luis Lima IBB — Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campos de Gualtar, 4710–057 Braga, Portugal.E-mail: [email protected]Search for more papers by this authorTiago Brandão, Tiago Brandão Unicer — Bebidas de Portugal, SGPS, SA; P.O. Box 1044, 4466–955 S. Mamede Infesta, Portugal.Search for more papers by this authorNelson Lima, Nelson Lima IBB — Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campos de Gualtar, 4710–057 Braga, Portugal.Search for more papers by this authorJosé António Teixeira, José António Teixeira IBB — Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campos de Gualtar, 4710–057 Braga, Portugal.Search for more papers by this author Luis Lima, Corresponding Author Luis Lima IBB — Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campos de Gualtar, 4710–057 Braga, Portugal.E-mail: [email protected]Search for more papers by this authorTiago Brandão, Tiago Brandão Unicer — Bebidas de Portugal, SGPS, SA; P.O. Box 1044, 4466–955 S. Mamede Infesta, Portugal.Search for more papers by this authorNelson Lima, Nelson Lima IBB — Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campos de Gualtar, 4710–057 Braga, Portugal.Search for more papers by this authorJosé António Teixeira, José António Teixeira IBB — Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campos de Gualtar, 4710–057 Braga, Portugal.Search for more papers by this author First published: 16 May 2012 https://doi.org/10.1002/j.2050-0416.2011.tb00480.xCitations: 10 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL ABSTRACT The impact of the initial dissolved oxygen, fermentation temperature, wort concentration and yeast pitching rate on the major fermentation process responses were evaluated by full factorial design and statistical analysis by JMP 5.01 (SAS software) software. Fermentation trials were carried out in 2L-EBC tall tubes using an industrial lager brewing yeast strain. The yeast viability, ethanol production, apparent extract and real degree of fermentation were monitored. The results obtained demonstrate that very high gravity worts at 22°P can be fermented in the same period of time as a 15°P wort, by raising the temperature to 18°C, the oxygen level to about 22 ppm, and increasing the pitching rate to 22 × 106 cell/mL. When diluting to obtain an 11.5°P beer extract, the volumetric brewing capacity increased 91% for the 22°P wort fermentation and 30% using the 15°P wort. After dilution, the fermentation of the 22°P wort resulted in a beer with higher esters levels, primarily the compound ethyl acetate. REFERENCES 1 Analytica EBC, European Brewing Convention. Verlag Hans Carl Getränke-Fachverlag: Nürnberg, Germany, 1998. 2 Anderson, R. G. and Kirsop, B. H., The control of volatile ester synthesis during the fermentation of wort of high specific gravity. J. Inst. Brew., 1974, 80, 48– 55. 3 Bardi, E., Koutinas, A. A. and Kanellaki, M., Room and low temperature brewing with yeast immobilized on gluten pellets. Process Biochem., 1997, 32, 691– 696. 4 Barker, R. L., Irwin, A. J. and Murray, C. R., The relationship between fermentation variables and flavor volatiles by direct gas chromatographic injection of beer. Tech. Q. Master Brew. Assoc. Am., 1992, 29, 11– 17. 5 Blieck, L., Toye, G., Dumortier, F., Verstrepen, K. J., Delvaux, F. R., Thevelein, J. M. and Van Dijck, P., Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions. Appl. Environ. Microbiol., 2007, 73, 815– 824. 6 Casey, G. P., Magnus, C. A., and Ingledew, W. M., High-Gravity brewing — effects of nutrition on yeast composition, fermentative ability, and alcohol production. Appl. Environ. Microbiol., 1984, 48, 639– 646. 7 Casey, G. P. and Ingledew, W. M., Ethanol tolerance in yeasts. Crit. Rev. Microbiol., 1986, 13, 219– 280. 8 D'Amore, T., Ethanol tolerance of yeast. Enzyme Microb. Technol., 1987, 9, 322– 330. 9 D'Amore, T., Cambridge Prize Lecture-Improving yeast fermentation performance. J. Inst. Brew, 1992, 98, 375– 382. 10 D'Amore, T., Panchal, C. J., Russell, I. and Stewart, G. G., Osmotic pressure effects and intracellular accumulation of ethanol in yeast during fermentation. J. Ind. Microbiol., 1988, 2, 365– 372. 11 Daum, G., Lees, N. D., Bard, M. and Dickson, R., Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast, 1998, 14, 1471– 1510. 12 Defernez, M., Foxall, R., Omalley, C., Montague, G., Ring, S. and Kemsley, E., Modelling beer fermentation variability. J. Food. Eng., 2007, 83, 167– 172. 13 Demel, R. A. and De Kruyff, B., The function of sterols in membranes. Biochim. Biophys. Acta, 1976, 457, 109– 132. 14 Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D. and Zhang, K., Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2009, 85, 253– 263. 15 Ernandes, J. R., Williams, J. W., Russell, I. and Stewart, G. G., Effect of yeast adaptation to maltose utilization on sugar uptake during the fermentation of the brewer's wort. J. Inst. Brew., 1993 99, 67– 71. 16 Erten, H., Tanguler, H. and Cakiroz, H., The effect of pitching rate on fermentation and flavour compounds in high gravity brewing. J. Inst. Brew., 2007, 113, 75– 79. 17 Garcia, A. I., Garcia, L. A. and Diaz, M., Prediction of ester production in industrial beer fermentation. Enzyme Microb. Technol., 1994, 16, 66– 71. 18 Garcia, A. I., Garcia, L. A., and Diaz, M., Modeling of diacetyl production during beer fermentation. J. Inst. Brew., 1994, 100, 179– 183. 19 Heggart, H., Margaritis, A., Stewart, R. J., Pilkington, M., Sobczak, J. and Russell, I., Measurement of brewing yeast viability and vitality: A review of methods. Tech. Q. Master Brew. Assoc. Am., 2000, 37, 409– 430. 20 Huseyin, E., Tanguler, H. and Cakiroz, H., The effect of pitching rate on fermentation and flavour compounds in high gravity brewing. J. Inst. Brew., 2007, 113, 75– 79. 21 Huuskonen, A., Markkula, T., Vidgren, V., Lima, L., Mulder, L., Geurts, W., Walsh, M. and Londesborough, J., Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts. Appl. Environ. Microbiol., 2010, 76, 1563– 1573. 22 Ingledew, W. M., Magnus, C. A. and Sosulski, F. W., Influence of oxygen on proline utilization during the wine fermentation. Am. J. Enol. Vitic., 1987, 38, 246– 248. 23 Jakobsen, M. and Piper, J. U., Performance and osmotolerance of different strains of lager yeast in high gravity fermentations. Tech. Q. Master Brew. Assoc. Am., 1989, 26, 86– 61. 24 Kunze, W., Technology Brewing and Malting, VLB: Berlin, 2004. 25 Landaud, S., Latrille, E. and Corrieu, G., Top pressure and temperature control the fusel alcohol/ester ratio through yeast growth in beer fermentation. J. Inst. Brew., 2001, 107, 107– 117. 26 Liu, Z., Zhang, G., and Sun, Y., Mutagenizing brewing yeast strain for improving fermentation property of beer. J. Biosci. Bioeng., 2008, 106, 33– 38. 27 Man, V., Using high pitching rate for improvement of yeast fermentation performance in high gravity brewing. Int. Food Res. J., 2009, 16, 547– 554. 28 Meilgaard, M. C., Flavor chemistry of beer — Part II: Flavour and threshold of 239 aroma volatiles. Tech. Q. Master Brew. Assoc. Am., 1975, 12, 151– 168. 29 Meilgaard, M. C., Flavor chemistry of beer. I. Flavor interaction between principal volatiles. Tech. Q. Master Brew. Assoc. Am., 1976, 12, 107– 117. 30 Meilgaard, M. C., Effects on flavour of innovations in brewery equipment and processing: a review. J. Inst. Brew, 2001, 107, 271– 286. 31 Montgomery, D. C., Design and Analysis of Experiments, 5th Edition, John Wiley & Sons: New York, 2001. 32 Morris, G. J., Winters, L., Coulson, G. E. and Clarke, K. J., Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J. Gen. Microbiol., 1986, 132, 2023– 2034. 33 Murray, D., Cahill, G., Walsh, P. and Donnelly, D., Effect of the concentration of propagation wort on yeast cell volume and fermentation performance. J. Am. Soc. Brew. Chem., 2000, 58, 112– 121. 34 Nagodawithana, T. W. and Steinkraus, K. H., Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in “rapid fermentation”. Appl. Environ. Microbiol., 1976, 31, 158– 162. 35 Nielsen, O., Control of the yeast propagation process— how to optimize oxygen supply and minimize stress. Yeast, 2005, 42, 128– 132. 36 Nobre, C., Santos, M. J., Dominguez, A., Torres, D., Rocha, O., Peres, A. M., Rocha, I., Ferreira, E. C., Teixeira, J. A. and Rodrigues, L. R., Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins. Analytica Chimica Acta, 2009, 654, 71– 76. 37 O'Rourke, T., The role of oxygen in brewing. Brew. Int., 2002, March, 45– 47. 38 O'Connor, E. S. C. and Ingledew, W. M., Effect of the timing of oxygenation on very high gravity brewing fermentations. J. Am. Soc. Brew. Chem., 1990, 48, 26– 32. 39 O'Connor-Cox, E. S., Lodolo, E. J. and Axcell, B. C., Role of oxygen in high-gravity fermentations in the absence of unsaturated lipid biosynthesis. J. Am. Soc. Brew. Chem., 1993, 51, 97– 107. 40 O'Connor-Cox, E., Lodolo, E., and Axcell, B., Mitochondrial relevance to yeast fermentative performance: a review. J. Inst. Brew., 1996, 102, 19– 25. 41 Odumeru, J. A., D'Amore, T., Russell, I., and Stewart, G. G., Effects of heat shock and ethanol stress on the viability of a Saccharomyces uvarum (carlsbergensis) brewing yeast strain during fermentation of high gravity wort. J. Ind. Microbiol., 1992, 10, 111– 116. 42 Peddie, H., Ester formation in brewery fermentations. J. Inst. Brew., 1990, 96, 327– 331. 43 Pratt, P., Bryce, J. and Stewart, G. G., The effects of osmotic pressure and ethanol on yeast viability and morphology. J. Inst. Brew., 2003, 109, 218– 228. 44 Ramirez, W., Optimal beer fermentation. J. Inst. Brew., 2007, 113, 325– 333. 45 Renger, R. S., van Hateren, S. H. and Luyben, K. A. M., The formation of esters and higher alcohols during brewery fermentation; the effect of carbon dioxide pressure. J. Inst. Brew., 1992, 98, 509– 513. 46 Saerens, S. M. G., Verbelen, P. J., Vanbeneden, N., Thevelein, J. M. and Delvaux, F. R., Monitoring the influence of high-gravity brewing and fermentation temperature on flavour formation by analysis of gene expression levels in brewing yeast. Appl. Microbiol. Biotechnol., 2008, 80, 1039– 1051. 47 Saerens, S. M. G., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., and Delvaux, F. R., Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol., 2008, 74, 454– 461. 48 Sall, J., Creighton, L. and Lehman, A., JMP Start Statistics: a Guide to Statistics and Data Analysis Using JMP. 47, SAS Institute: Carey, NC, 2005. 49 Sigler, K., Matoulkova, D., Dienstbier, M. and Gabriel, P., Net effect of wort osmotic pressure on fermentation course, yeast vitality, beer flavor, and haze. Appl. Microbiol. Biotechnol., 2009, 82, 1027– 1035. 50 Stewart, G. G., Bothwick, R., Bryce, J., Cooper, D., Cunningham, S., Hart, C. and Rees, E., Recent developments in high gravity brewing. Tech. Q. Master Brew. Assoc. Am., 1997, 34, 264– 270. 51 Suihko, M., Vilpola, A. and Linko, M., Pitching rate in high gravity brewing. J. Inst. Brew., 1993, 99, 341– 346. 52 Thomas, K. C. and Ingledew, W. M., Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol., 1992, 10, 61– 68. 53 Trelea, I., Predictive modelling of brewing fermentation: from knowledge-based to black-box models. Math Comput. Simulat., 2001, 56, 405– 424. 54 Trelea, I., Dynamic optimisation of the aroma production in brewing fermentation. J. Process Control, 2004, 14, 1– 16. 55 Verbelen, P. J., Dekoninck, T. M. L., Saerens, S. M. G., Van Mulders, S. E., Thevelein, J. M. and Delvaux, F. R., Impact of pitching rate on yeast fermentation performance and beer flavour. Appl. Microbiol. Biotechnol., 2009, 82, 155– 167. 56 Verbelen, P. J., Saerens, S. M. G., Van Mulders, S. E., Delvaux, F. and Delvaux, F. R., The role of oxygen in yeast metabolism during high cell density brewery fermentations. Appl. Microbiol. Cell Physiol., 2009, 82, 1143– 1156. 57 Verstrepen, K. J., Derdelinckx, G., Dufour, J. P., Winderickx, J., Thevelein, J. M., Pretorius, I. S. and Delvaux, F. R., Flavor-active esters: adding fruitiness to beer. J. Biosci. Bioeng., 2003, 96, 110– 118. 58 Yokoyama, A. and Ingledew, W. M., The effect of filling procedures on multi-fill fermentations. Tech. Q. Master Brew. Assoc. Am., 1997, 34, 320– 327. Citing Literature Volume117, Issue32011Pages 359-367 ReferencesRelatedInformation

Referência(s)