Artigo Revisado por pares

Relaxation Methods for Convex Problems

1968; Society for Industrial and Applied Mathematics; Volume: 5; Issue: 3 Linguagem: Inglês

10.1137/0705048

ISSN

1095-7170

Autores

Samuel Schechter,

Tópico(s)

Model Reduction and Neural Networks

Resumo

Previous article Next article Relaxation Methods for Convex ProblemsSamuel SchechterSamuel Schechterhttps://doi.org/10.1137/0705048PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] W. F. Ames, Nonlinear partial differential equations in engineering, Academic Press, New York, 1965xii+511 MR0210342 0176.39701 Google Scholar[2] C. W. Cryer, On the numerical solution of a quasi-linear elliptic equation, J. Assoc. Comput. Mach., 14 (1967), 363–375 MR0238500 0168.14605 CrossrefISIGoogle Scholar[3] Paul Concus, Numerical solution of the minimal surface equation, Math. Comp., 21 (1967), 340–350 MR0229394 0189.16605 CrossrefISIGoogle Scholar[4] H. J. Greenberg, , W. S. Dorn and , E. H. Wetherell, P. S. Symonds and , E. H. Lee, A comparison of flow and deformation theories in plastic torsion of a square cylinder, Plasticity: Proceedings of the Second Symposium on Naval Structural Mechanics, Pergamon, Oxford, 1960, 279–296, Brown University MR0118095 Google Scholar[5] H. H. Greenberg, Solving structural mechanics problems on digital computers, Tech. Rep., NYO-8670, AEC Computing and Applied Math. Center, Courant Institute of Mathematical Sciences, New York University, New York, 1958 Google Scholar[6] Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953x+274 MR0059056 0051.34602 Google Scholar[7] James M. Ortega and , Maxine L. Rockoff, Nonlinear difference equations and Gauss-Seidel type iterative methods, SIAM J. Numer. Anal., 3 (1966), 497–513 10.1137/0703043 MR0203933 0276.65030 LinkGoogle Scholar[8] A. M. Ostrowski, Solution of equations and systems of equations, Second edition. Pure and Applied Mathematics, Vol. 9, Academic Press, New York, 1966xiv+338 MR0216746 0222.65070 Google Scholar[9] D. J. Prager and , M. L. Rasmussen, The flow of a rarefied plasma past a sphere, SU-IPR Rep., 132, Institute for Plasma Research, Stanford University, Stanford, California, 1967, (or SU-DAAR Rep. 299) Google Scholar[10] Samuel Schechter, Iteration methods for nonlinear problems, Trans. Amer. Math. Soc., 104 (1962), 179–189 MR0152142 0106.31801 CrossrefGoogle Scholar[11] Samuel Schechter, Relaxation methods for linear equations, Comm. Pure Appl. Math., 12 (1959), 313–335 MR0107361 0096.09801 CrossrefISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails A gradual rank increasing process for matrix completion15 March 2017 | Numerical Algorithms, Vol. 76, No. 4 Cross Ref A minimum norm approach for low-rank approximations of a matrixJournal of Computational and Applied Mathematics, Vol. 234, No. 11 Cross Ref Coherent 3-D echo detection for ultrasonic imagingIEEE Transactions on Signal Processing, Vol. 51, No. 3 Cross Ref On nonlinear SOR-like methods, III — Global convergence of SOR, SSOR and USSOR methods for convex problemsJapan Journal of Industrial and Applied Mathematics, Vol. 15, No. 1 Cross Ref A Gauss-Seidel type solver for special convex programs, with application to frictional contact mechanicsJournal of Optimization Theory and Applications, Vol. 87, No. 1 Cross Ref Parallel nonlinear multisplitting relaxation methodsApplied Mathematics, Vol. 10, No. 3 Cross Ref Block-relaxation Algorithms in Statistics Cross Ref Gauss-Seidel-Newton-Armijo approach for minimization problems on the non-negative orthant; Application to spatial price equilibrium problemsEuropean Journal of Operational Research, Vol. 57, No. 3 Cross Ref Parallel algorithms for the iterative solution of sparse least-squares problemsParallel Computing, Vol. 13, No. 3 Cross Ref On the properties of approximate mean value analysis algorithms for queueing networksACM SIGMETRICS Performance Evaluation Review, Vol. 16, No. 1 Cross Ref Successive Refinement of Large Multicell ModelsAchiya Dax14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 22, No. 5AbstractPDF (2465 KB)An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problemsApplied Mathematics & Optimization, Vol. 13, No. 1 Cross Ref Global convergence of nonlinear successive overrelaxation via linear theoryComputing, Vol. 34, No. 1 Cross Ref Varying relaxation parameters in nonlinear successive overrelaxationComputing, Vol. 34, No. 1 Cross Ref Nonlinear successive over-relaxationNumerische Mathematik, Vol. 44, No. 2 Cross Ref On global convergence of coordinate relaxation in the case of an unsymmetrical, diagonally dominant JacobianComputing, Vol. 28, No. 4 Cross Ref References Cross Ref References Cross Ref Some properties of a uniformly linearly independent sequence of subspacesLinear Algebra and its Applications, Vol. 25 Cross Ref Conjugate gradient algorithms in the solution of optimization problems for nonlinear elliptic partial differential equationsComputing, Vol. 22, No. 1 Cross Ref Numerical solution of nonlinear elliptic partial differential equations by a generalized conjugate gradient methodComputing, Vol. 19, No. 4 Cross Ref On the approximate solution of nonlinear variational inequalitiesNumerische Mathematik, Vol. 29, No. 4 Cross Ref On the solution of large, structured linear complementarity problems: The block partitioned caseApplied Mathematics & Optimization, Vol. 4, No. 1 Cross Ref Literatur Cross Ref Subspace selection algorithms to be used with the nonlinear projection methods in solving systems of nonlinear equationsComputers & Mathematics with Applications, Vol. 2, No. 3-4 Cross Ref Menisci in arrays of cylinders: Numerical simulation by finite elementsJournal of Colloid and Interface Science, Vol. 52, No. 3 Cross Ref Aspects of Nonlinear Block Successive OverrelaxationL. A. Hageman and T. A. Porsching14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 12, No. 3AbstractPDF (1825 KB)Iterative solution of linear and nonlinear systems derived from elliptic partial differential equations14 September 2006 Cross Ref Methodes de Decomposition pour la Minimisation d’une Fonction sur un Espace ProduitB. Martinet and A. Auslender1 August 2006 | SIAM Journal on Control, Vol. 12, No. 4AbstractPDF (9529 KB)Analyse numerique du champ magnetique d'un alternateur par elements finis et sur-relaxation ponctuelle non lineaireComputer Methods in Applied Mechanics and Engineering, Vol. 3, No. 1 Cross Ref ON THE CHOICE OF RELAXATION PARAMETERS FOR NONLINEAR PROBLEMS Cross Ref Sur des méthodes d'optimisation par relaxation4 May 2009 | Revue française d'automatique informatique recherche opérationnelle. Mathématique, Vol. 7, No. R3 Cross Ref The Solution of a Quadratic Programming Problem Using Systematic OverrelaxationColin W. Cryer18 July 2006 | SIAM Journal on Control, Vol. 9, No. 3AbstractPDF (635 KB)Iterative Lösung nichtlinearer Gleichungssysteme und Diskretisierungsverfahren bei elliptischen DifferentialgleichungenComputing, Vol. 5, No. 3 Cross Ref BIBLIOGRAPHY Cross Ref Etude numerique du champ magnetique dans un alternateur tetrapolaire par la methode des elements finis Cross Ref The Rayleigh–Ritz Process for the Simplest Problem in the Calculus of VariationsR. B. Simpson14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 6, No. 2AbstractPDF (1045 KB) Volume 5, Issue 3| 1968SIAM Journal on Numerical Analysis History Submitted:05 February 1968Published online:14 July 2006 InformationCopyright © 1968 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0705048Article page range:pp. 601-612ISSN (print):0036-1429ISSN (online):1095-7170Publisher:Society for Industrial and Applied Mathematics

Referência(s)