The Preponderance of Evidence Supports Computer-aided Detection for Screening Mammography
2009; Radiological Society of North America; Volume: 253; Issue: 1 Linguagem: Inglês
10.1148/radiol.2531090611
ISSN1527-1315
Autores Tópico(s)Digital Radiography and Breast Imaging
ResumoHomeRadiologyVol. 253, No. 1 PreviousNext The Preponderance of Evidence Supports Computer-aided Detection for Screening MammographyRobyn L. BirdwellRobyn L. BirdwellAuthor Affiliations1From the Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115.Address correspondence to the author (e-mail: [email protected]).Robyn L. BirdwellPublished Online:Oct 1 2009https://doi.org/10.1148/radiol.2531090611MoreSectionsFull textPDF ToolsAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookXLinked In AbstractHaving a system to aid the human eye that does nottake vacations, is not vulnerable to fatigue or environmental distractions, is without, emotion, and is designed specifically to assist the very human eye to “look over here” seems like a good idea. References 1 Goldberg C . “If you don’t find it often, you often don’t find it.” Boston Globe. May 31, 2005. http://www.bostonglobe.com. Accessed July 31, 2009. Google Scholar2 Wolfe JM , Horowitz TS , Kenner NM . Cognitive psychology: rare items often missed in visual searches. Nature 2005;435:439–440. Crossref, Medline, Google Scholar3 Harvey JA , Fajardo LL , Innis CA . Previous mammograms in patients with impalpable breast carcinoma: retrospective vs blinded interpretation. AJR Am J Roentgenol 1993;161:1167–1172. Crossref, Medline, Google Scholar4 Linver M . Mammography: audit benchmarks. In: Berg WABirdwell RL, eds. Diagnostic imaging: breast. Salt Lake City, Utah: Amirsys, 2006; 18–23. Google Scholar5 Bird RE , Wallace TW , Yankaskas BC . Analysis of cancers missed at screening mammography. Radiology 1992;184:613–617. Link, Google Scholar6 Majid AS , de Paredes ES , Doherty RD , Sharma NR , Salvador X . Missed breast carcinoma: pitfalls and pearls. RadioGraphics 2003;23:881–895. Link, Google Scholar7 Birdwell RL , Wang S . Mammography: screening. In: Berg WABirdwell RL, eds. Diagnostic imaging: breast. Salt Lake City, Utah: Amirsys, 2006; 6–11. Google Scholar8 Nodine CF , Kundel HL , Lauver SC , Toto LC . Nature of expertise in searching mammograms for breast masses. Acad Radiol 1996;3:1000–1006. Crossref, Medline, Google Scholar9 Mello-Thoms C . How does the perception of a lesion influence visual search strategy in mammogram reading? Acad Radiol 2006;13:275–288. Crossref, Medline, Google Scholar10 Baines CJ , McFarlane DV , Miller AB . The role of the reference radiology: estimates of inter-observer agreement and potential delay in cancer detection in the national breast screening study. Invest Radiol 1990;25:971–976. Crossref, Medline, Google Scholar11 Birdwell RL , Ikeda DM , O'Shaughnessy KF , Sickles EA . Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection. Radiology 2001;219:192–202. Link, Google Scholar12 Berg WA , D'Orsi CJ , Jackson VP , et al.. Does training in the Breast Imaging Reporting and Data System (BI-RADS) improve biopsy recommendation or feature analysis agreement with experienced breast imagers at mammography? Radiology 2002;224:871–880. Link, Google Scholar13 Van Dijck JA , Verbeek AL , Hendriks JH , Holland R . The current detectability of breast cancer in a mammographic screening program. Cancer 1993;72:1933–1938. Crossref, Medline, Google Scholar14 Hofvind S , Skaane P , Vitak B , et al.. Influence of review design on percentages of missed interval breast cancers: retrospective study of interval cancers in a population-based screening program. Radiology 2005;237:437–443. Link, Google Scholar15 Warren-Burhenne LJ , Wood SA , D'Orsi CJ , et al.. Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology 2000;215:554–562. Link, Google Scholar16 Brem RF , Baum J , Lechner M , et al.. Improvement in sensitivity of screening mammography with computer-aided detection: a multiinstitutional trial. AJR Am J Roentgenol 2003;181:687–693. Crossref, Medline, Google Scholar17 Kopans DB , Rafferty EA , Kricun B , et al.. Double reading mammograms among experienced radiologists [abstr]. In: Radiological Society of North America Scientific Assembly and Annual Meeting Program. Oak Brook, Ill: Radiological Society of North America, 2004; 472. Google Scholar18 Harvey SC , Geller B , Oppenheimer RG , Pinet M , Riddell L , Garra B . Increase in cancer detection and recall rates with independent double interpretation of screening. AJR Am J Roentgenol 2003;180:1461–1467. Crossref, Medline, Google Scholar19 Zheng B , Leader JK , Abrams G , et al.. Computer-aided detection schemes: the effect of limiting the number of cued regions in each case. AJR Am J Roentgenol 2004;182:579–583. Crossref, Medline, Google Scholar20 Paquerault S , Wade DI , Petrick N , Meyers KJ , Samuelson FW . Observer evaluation of computer-aided detection: second reader versus concurrent reader scenario. In: Jiang YSahiner B, eds. Proceedings of SPIE: medical imaging 2007—image perception, observer performance, and technology assessment. Vol 6515. Bellingham, Wash: SPIE–The International Society for Optical Engineering, 2007. Crossref, Google Scholar21 Dean JC , Ilvento CC . Improved cancer detection using computer-aided detection with diagnostic and screening mammography. AJR Am J Roentgenol 2006;187:20–28. Crossref, Medline, Google Scholar22 Skaane P , Kshirsagar A , Stapleton S , Young K , Castellino RA . Effect of computer-aided detection on independent double reading of paired screen-film and full-field digital screening mammograms. AJR Am J Roentgenol 2007;188:377–384. Crossref, Medline, Google Scholar23 Ikeda DM , Birdwell RL , O'Shaughnessy KF , Sickles EA , Brenner RF . Computer-aided detection output on 172 subtle findings on normal mammograms previously obtained in women with breast cancer detected at follow-up screening mammography. Radiology 2004;230:811–819. Link, Google Scholar24 Freer TW , Ulissey MJ . Screening mammography with CAD: prospective study of 12,860 patients in a community breast center. Radiology 2001;220:781–786. Link, Google Scholar25 Birdwell RL , Bandodkar P , Ikeda DM . Computer-aided detection with screening mammography in a university hospital setting. Radiology 2005;236:451–457. Link, Google Scholar26 Ko JM , Nicholas MJ , Mendel JB , Slanetz PJ . Prospective assessment of computer-aided detection in interpretation of screening mammography. AJR Am J Roentgenol 2006;187:1483–1491. Crossref, Medline, Google Scholar27 Morton MJ , Whaley DH , Brandt KR , et al.. Screening mammograms: interpretation with computer-aided detection—prospective evaluation. Radiology 2006;239:375–383. Link, Google Scholar28 Brancato B , Houssami N , Francesca D , et al.. Does computer-aided detection (CAD) contribute to the performance of digital mammography in a self-referred population? Breast Cancer Res Treat 2008;111:373–376. Crossref, Medline, Google Scholar29 Gur D , Sum Kin JH , Rocketed HE , et al.. Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system. J Natl Cancer Inst 2004;96:185–190. Crossref, Medline, Google Scholar30 Feig SA , Sickles EA , Evans WP , Linver MN . Re: Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system [letter]. J Natl Cancer Inst 2004;96:1260–1261; author reply 1261. Crossref, Medline, Google Scholar31 Cupples TE , Cunningham JE , Reynolds JC . Impact of CAD in a regional screening mammography program. AJR Am J Roentgenol 2005;185:944–950. Crossref, Medline, Google Scholar32 Fenton JJ , Taplin SH , Carney PA , et al.. Influence of computer aided detection on performance of screening mammography. N Engl J Med 2007;356:1399–1409. Crossref, Medline, Google Scholar33 Gromet M . Comparison of computer-aided detection to double reading of screening mammograms: review of 231,221 mammograms. AJR Am J Roentgenol 2008;190:854–859. Crossref, Medline, Google Scholar34 Nishikawa RM , Schmidt RA , Metz CE . Computer-aided screening mammography [letter]. N Engl J Med 2007;357:84; author reply 85. Medline, Google Scholar35 Ruiz JF . Computer-aided screening mammography [letter]. N Engl J Med 2007;357:84; author reply 85. Medline, Google Scholar36 Feig SA , Birdwell RL , Linver MN . Computer-aided screening mammography [letter]. N Engl J Med 2007;357:84; author reply 85. Medline, Google Scholar37 Georgian-Smith D , Moore RH , Halpern E , et al.. Blinded comparison of computer-aided detection with human second reading in screening mammography. AJR Am J Roentgenol 2007;189:1135–1141. Crossref, Medline, Google Scholar38 Gilbert FJ , Astley SM , Gillan MG , et al.. Single reading with computer-aided detection for screening mammography. N Engl J Med 2008;359:1675–1684. Crossref, Medline, Google Scholar39 Pisano ED , Gatsonis C , Hendrick E , et al.. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 2005;353:1773–1783. Crossref, Medline, Google Scholar40 Soo MS , Rosen EL , Zia JQ , Ghate S , Baker JA . Computer-aided detection of amorphous calcifications. AJR Am J Roentgenol 2005;184:887–892. Crossref, Medline, Google Scholar41 Baker JA , Rosen EL , Lo JY , Gimenez EI , Walsh R , Soo MS . Computer-aided detection (CAD) in screening mammography: sensitivity of commercial CAD systems for detecting architectural distortion. AJR Am J Roentgenol 2003;181:1083–1088. Crossref, Medline, Google Scholar42 ACM SIGCHI curricula for human-computer interaction. Association for Computing Machinery Web site. http://sigchi.org/cdg/index/html. Updated July 29, 2009. Accessed July 31, 2009. Google Scholar43 Wolfe JM , Horowitz TS , Van Wert MJ , Kenner NM , Place SS , Kibbi N . Low target prevalence is a stubborn source of errors in visual search tasks. J Exp Psychol Gen 2007;136:623–638. Crossref, Medline, Google Scholar44 Bond AB , Kamil AC . Visual predators select for crypticity and polymorphism in virtual prey. Nature 2002;415:609–613. Crossref, Medline, Google ScholarArticle HistoryReceived April 7, 2009; revision requested April 29; revision received May 25; final version accepted May 26.Published in print: Oct 2009 FiguresReferencesRelatedDetailsCited ByMulti-view fusion-based local-global dynamic pyramid convolutional cross-tansformer network for density classification in mammographyYutongZhong, YanPiao, GuohuiZhang12 October 2023 | Physics in Medicine & BiologyDiagnostic performance of mammography and ultrasound in breast cancer: a systematic review and meta-analysisGetu FerenjiTadesse, Eyachew MisganewTegaw, Ejigu KebedeAbdisa2023 | Journal of Ultrasound, Vol. 26, No. 2Anomaly Detection of Calcifications in Mammography Based on 11,000 Negative CasesRuiHou, YifanPeng, Lars J.Grimm, YinhaoRen, Maciej A.Mazurowski, Jeffrey R.Marks, Lorraine M.King, Carlo C.Maley, E. ShelleyHwang, Joseph Y.Lo2022May1 | IEEE Transactions on Biomedical Engineering, Vol. 69, No. 5Artificial Intelligence for Innovative Healthcare InformaticsAmanpreetKaur, MamoonRashid, Ali KashifBashir, Shabir AhmadParah2022Breast CancerEktaDhamija, NiranjanKhandelwal2022Disruptive technologies: Present and futureMagdalade Araújo Novaes, ArindamBasu2020Jan1References2020Jan1Improved Cancer Detection Using Artificial Intelligence: a Retrospective Evaluation of Missed Cancers on MammographyAlyssa T.Watanabe, VivianLim, Hoanh X.Vu, RichardChim, EricWeise, JennaLiu, William G.Bradley, Christopher E.Comstock2019 | Journal of Digital Imaging, Vol. 32, No. 4Added Value of Radiomics on Mammography for Breast Cancer Diagnosis: A Feasibility StudyNingMao, PingYin, QinglinWang, MeijieLiu, JianjunDong, XuexiZhang, HaizhuXie, NanHong2019 | Journal of the American College of Radiology, Vol. 16, No. 4Radiology-Pathology Correlation to Facilitate Peer Learning: An Overview Including Recent Artificial Intelligence MethodsRoss W.Filice2019 | Journal of the American College of Radiology, Vol. 16, No. 92019 14th International Conference on Computer Engineering and Systems (ICCES)NesmaEl-Sokkary, A. A.Arafa, Ahmed H.Asad, Hesham A.Hefny20192019 15th International Computer Engineering Conference (ICENCO)NesmaEl-Sokkary, A. A.Arafa, Ahmed H.Asad, Hesham A.Hefny2019The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic reviewEmilie LHenriksen, Jonathan FCarlsen, Ilse MMVejborg, Michael BNielsen, Carsten ALauridsen2019 | Acta Radiologica, Vol. 60, No. 1Will machine learning end the viability of radiology as a thriving medical specialty?StephenChan, Eliot LSiegel2019 | The British Journal of Radiology, Vol. 92, No. 1094Intelligent Systems Reference LibraryMenglinJiang, ShaotingZhang, Dimitris N.Metaxas2018 | , Vol. 140Computer-aided diagnosis of contrast-enhanced spectral mammography: A feasibility studyBhavika K.Patel, SaraRanjbar, TeresaWu, Barbara A.Pockaj, JingLi, NanZhang, MarkLobbes, BinZhang, J. RossMitchell2018 | European Journal of Radiology, Vol. 98Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016John D.Keen, Joanna M.Keen, James E.Keen2018 | Journal of the American College of Radiology, Vol. 15, No. 1Medical Imaging 2018: Image Perception, Observer Performance, and Technology AssessmentGeorgia V.Ionescu, Elaine F.Harkness, JohanHulleman, Susan M.Astley, Robert M.Nishikawa, Frank W.Samuelson201814th International Workshop on Breast Imaging (IWBI 2018)XiaoqinWang, JinZeLiu, QuanChen, Kyleluo, XiaofeiZhang, Elizabeth A.Krupinski2018Clinical application of S-Detect to breast masses on ultrasonography: a study evaluating the diagnostic performance and agreement with a dedicated breast radiologistKiwookKim, Mi KyungSong, Eun-KyungKim, Jung HyunYoon2017 | Ultrasonography, Vol. 36, No. 1Analog Computer-Aided Detection (CAD) information can be more effective than binary marksCorbin A.Cunningham, TraftonDrew, Jeremy M.Wolfe2017 | Attention, Perception, & Psychophysics, Vol. 79, No. 2Reducing false positives of microcalcification detection systems by removal of breast arterial calcificationsJan‐JurreMordang, AlbertGubern‐Mérida, Gerardden Heeten, NicoKarssemeijer14 March 2016 | Medical Physics, Vol. 43, No. 4PACS Administrators’ and Radiologists’ Perspective on the Importance of Features for PACS SelectionVivekJoshi, Vamsi R.Narra, KailashJoshi, KyootaiLee, DavidMelson2014 | Journal of Digital Imaging, Vol. 27, No. 4Breast density classification to reduce false positives in CADe systemsNoeliaVállez, GloriaBueno, OscarDéniz, JuliánDorado, José AntonioSeoane, AlejandroPazos, CarlosPastor2014 | Computer Methods and Programs in Biomedicine, Vol. 113, No. 2Single reading with computer-aided detection performed by selected radiologists in a breast cancer screening programXavierBargalló, GoraneSantamaría, Montsedel Amo, PedroArguis, JoséRíos, JaumeGrau, MartaBurrel, EnriqueCores, MartínVelasco2014 | European Journal of Radiology, Vol. 83, No. 11Learning from unbalanced data: A cascade-based approach for detecting clustered microcalcificationsA.Bria, N.Karssemeijer, F.Tortorella2014 | Medical Image Analysis, Vol. 18, No. 2Vibrational spectroscopy for cancer diagnosticsO. J.Old, L. M.Fullwood, R.Scott, G. R.Lloyd, L. M.Almond, N. A.Shepherd, N.Stone, H.Barr, C.Kendall2014 | Analytical Methods, Vol. 6, No. 12Computer-Aided Analysis of 64-Slice Coronary Computed Tomography Angiography: A Comparison with Manual InterpretationAlexander J.Abramowicz, Melissa A.Daubert, VinayMalhotra, SummerFerraro, JoshuaRing, RomanGoldenberg, MichaelKam, HenleyWu, DonnaKam, AimeeMinton, MichaelPoon2013 | Heart International, Vol. 8, No. 1Effects of Age, Breast Density and Volume on Breast Cancer Diagnosis: A Retrospective Comparison of Sensitivity of Mammography and Ultrasonography in China's Rural AreasFeng-LiangWang, FeiChen, HongYin, NanXu, Xiao-XiangWu, Jing-JingMa, ShenGao, Jin-HaiTang, ChengLu2013 | Asian Pacific Journal of Cancer Prevention, Vol. 14, No. 4When and Why Might a Computer-aided Detection (CAD) System Interfere with Visual Search? An Eye-tracking StudyTraftonDrew, CorbinCunningham, Jeremy M.Wolfe2012 | Academic Radiology, Vol. 19, No. 10A systematic review of computer-assisted diagnosis in diagnostic cancer imagingLeila H.Eadie, PaulTaylor, Adam P.Gibson2012 | European Journal of Radiology, Vol. 81, No. 1Difficulties and Errors in Diagnosis of Breast NeoplasmsCatherine S.Giess, Elisabeth P.Frost, Robyn L.Birdwell2012 | Seminars in Ultrasound, CT and MRI, Vol. 33, No. 4Empirical Investigation of Radiologists’ Priorities for PACS Selection: An Analytical Hierarchy Process ApproachVivekJoshi, KyootaiLee, DavidMelson, Vamsi R.Narra2011 | Journal of Digital Imaging, Vol. 24, No. 4False Positive Marks on Unsuspicious Screening Mammography with Computer-Aided DetectionMary C.Mahoney, KarthikeyanMeganathan2011 | Journal of Digital Imaging, Vol. 24, No. 5Effectiveness of Computer-Aided Detection in Community Mammography PracticeJ. J.Fenton, L.Abraham, S. H.Taplin, B. M.Geller, P. A.Carney, C.D'Orsi, J. G.Elmore, W. E.Barlow2011 | JNCI Journal of the National Cancer Institute, Vol. 103, No. 152011 24th SIBGRAPI Conference on Graphics, Patterns and ImagesThomasDeserno, MichaelSoiron, JuliaOliveira, ArnaldoAraujo2011Is computer aided detection (CAD) cost effective in screening mammography? A model based on the CADET II studyCarlaGuerriero, Maureen GCGillan, JohnCairns, Matthew GWallis, Fiona JGilbert2011 | BMC Health Services Research, Vol. 11, No. 1Detection and Classification of Calcifications on Digital Breast Tomosynthesis and 2D Digital Mammography: A ComparisonM. LeeSpangler, Margarita L.Zuley, Jules H.Sumkin, GordanAbrams, Marie A.Ganott, ChristianeHakim, RonaldPerrin, Denise M.Chough, RatanShah, DavidGur2011 | American Journal of Roentgenology, Vol. 196, No. 2Where Is the Evidence: Does Computer-aided Overdiagnosis Save Lives?John D. Keen, 8 February 2010 | Radiology, Vol. 254, No. 3CADe Prompts and Observer PerformanceJanne J.Näppi2010 | Academic Radiology, Vol. 17, No. 8How Widely Is Computer-Aided Detection Used in Screening and Diagnostic Mammography?Vijay M.Rao, David C.Levin, LaurenceParker, BarbaraCavanaugh, Andrea J.Frangos, Jonathan H.Sunshine2010 | Journal of the American College of Radiology, Vol. 7, No. 10Breast Cancer Screening in Women at Average Risk and High RiskJennifer L.Griffin, Mark D.Pearlman2010 | Obstetrics & Gynecology, Vol. 116, No. 6Features of Prospectively Overlooked Computer-Aided Detection Marks on Prior Screening Digital Mammograms in Women With Breast CancerNariyaCho, Seung JaKim, Hye YoungChoi, Chae YeonLyou, Woo KyungMoon2010 | American Journal of Roentgenology, Vol. 195, No. 5Exploring the potential of context‐sensitive CADe in screening mammographyGeorgia D.Tourassi, Maciej A.Mazurowski, Brian P.Harrawood, Elizabeth A.Krupinski2010 | Medical Physics, Vol. 37, No. 11Recommended Articles Should We Continue to Biopsy All Amorphous Calcifications?Radiology2018Volume: 288Issue: 3pp. 680-681Grouped Amorphous Calcifications at Mammography: Frequently Atypical but Rarely Associated with Aggressive MalignancyRadiology2018Volume: 288Issue: 3pp. 671-679Strengths and Weaknesses of Synthetic Mammography in ScreeningRadioGraphics2017Volume: 37Issue: 7pp. 1913-1927Calcifications at Digital Breast Tomosynthesis: Imaging Features and Biopsy TechniquesRadioGraphics2019Volume: 39Issue: 2pp. 307-318Synthetic Mammography: Benefits, Drawbacks, and PitfallsRadioGraphics2023Volume: 43Issue: 10See More RSNA Education Exhibits New Horizons: Artificial Intelligence (AI) In Digital Breast Tomosynthesis (DBT)Digital Posters2021Implementation of Synthetic Mammography: Benefits, Drawbacks, and PitfallsDigital Posters2022The Money Behind Mammo: A Dive Into The Finances Of Breast ImagingDigital Posters2021 RSNA Case Collection Pulmonary HamartomaRSNA Case Collection2021BI-RADS 4C - High suspicion for malignancyRSNA Case Collection2022Ductal Carcinoma In SituRSNA Case Collection2022 Vol. 253, No. 1 Supplemental MaterialMetrics Altmetric Score PDF download
Referência(s)