Artigo Revisado por pares

XPS and factor analysis study of initial stages of cerium oxide growth on polycrystalline tungsten

2015; Wiley; Volume: 47; Issue: 6 Linguagem: Inglês

10.1002/sia.5762

ISSN

1096-9918

Autores

Yaroslav Polyak, Zdeněk Bastl,

Tópico(s)

Electron and X-Ray Spectroscopy Techniques

Resumo

Surface and Interface AnalysisVolume 47, Issue 6 p. 663-671 Research article XPS and factor analysis study of initial stages of cerium oxide growth on polycrystalline tungsten Yaroslav Polyak, Corresponding Author Yaroslav Polyak Academy of Sciences of the Czech Republic, Institute of Physics, CZ-18221 Prague 8, Czech Republic Correspondence to: Y. Polyak, Institute of Physics, Academy of Sciences of the Czech Republic, CZ-18221 Prague 8, Czech Republic. E-mail: [email protected]Search for more papers by this authorZ. Bastl, Z. Bastl Academy of Sciences of the Czech Republic, J. Heyrovsky Institute of Physical Chemistry, CZ-18223 Prague 8, Czech RepublicSearch for more papers by this author Yaroslav Polyak, Corresponding Author Yaroslav Polyak Academy of Sciences of the Czech Republic, Institute of Physics, CZ-18221 Prague 8, Czech Republic Correspondence to: Y. Polyak, Institute of Physics, Academy of Sciences of the Czech Republic, CZ-18221 Prague 8, Czech Republic. E-mail: [email protected]Search for more papers by this authorZ. Bastl, Z. Bastl Academy of Sciences of the Czech Republic, J. Heyrovsky Institute of Physical Chemistry, CZ-18223 Prague 8, Czech RepublicSearch for more papers by this author First published: 17 April 2015 https://doi.org/10.1002/sia.5762Citations: 20Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The initial stages of growth of the nanostructured cerium oxide deposited on the polycrystalline tungsten surface by pulsed laser deposition are studied using XPS technique. The population of Ce (III) and Ce (IV) oxidation states in the deposited CeO2−x layers is determined applying factor analysis method. Tungsten atoms react with oxygen from the cerium oxide nanoparticles already at the room temperature, and a layer of tungsten trioxide is formed at the interface. Gradual heating of the samples up to 900 K leads to the increase of the thickness of WO3 oxide layer and a partial reduction of Ce (IV) to Ce (III). The spectra of O (1s) photoelectrons are composed from a signal originating from metal oxides and a signal of surface superoxide and hydroxyl groups. Factor analysis was performed on the spectra of Ce (3d) photoelectrons to determine the position, shape, and intensity of the spectral components belonging to Ce (III) and Ce (IV) oxidation states. We propose a new simple method to generate components of the spectroscopic meaning. The basic idea of our method consists in the use of the slightly positive values instead of zeros to the needle test vector. Two components are required to reproduce the original data within the experimental errors. Copyright © 2015 John Wiley & Sons, Ltd. References 1 L. Cossarutto, N. Chaoui, E. Millon, J. F. Muller, J. Lambert, M. Alnot, Appl. Surf. Sci. 1998, 126, 352–355. 2 W. Xiao, Q. Guo, E. G. Wang, Chem. Phys. Lett. 2003, 368, 527–531. 3 Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 2003, 301, 935–938. 4 A. Trovareli, Catalysis by Ceria and Related Materials, Imperial College Press, London, 2002. 5 C. W. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 2010, 14, 1125–1144. 6 P. Jasinski, T. Suzuki, H. U. Anderson, Sens. Actuators B 2003, 95, 73–77. 7 J. Gerblinger, W. Lohwasser, U. Lampe, H. Meixner, Sens. Actuators B 1995, 26, 93–96. 8 G. Fang, Z. Liu, C. Liu, K. -L. Yao, Sens. Actuators B 2003, 66, 46–48. 9 J. Qiao, C. Y. Yang, Mater. Sci. Eng. R 1995, 14, 157–201. 10 J. A. Wang, J. M. Dominguez, A. Montoya, S. Castillo, J. Navarrete, M. Moran-Pineda, J. Reyes-Gasga, X. Bokhimi, Chem. Mater. 2002, 14, 4676–4683. 11 C. Tian, Y. Du, S.-W. Chan, J. Vac. Sci. Technol. A 1997, 15, 85–93. 12 M. Alexandrou, R. M. Nix, Surf. Sci. 1994, 321, 47–57. 13 H. Cordatos, R. J. Gorte, J. Catal. 1996, 159, 112–118. 14 D. R. Mullins, P. V. Radulovic, S. H. Overbury, Surf. Sci. 1999, 429, 186–198. 15 R. -P. Wang, Y. -L. Zhou, S. -H. Pan, H. Zhang, X. -X. Guo, X. -M. Xiong, H. -B. Lu, Z. -H. Zhen, G. -Z. Yang, J. Appl. Phys. 1998, 84, 1994–1998. 16 C. Hardacre, G. M. Roe, R. M. Lambert, Surf. Sci. 1995, 326, 1–10. 17 K. -D. Schierbaum, Surf. Sci. 1998, 399, 29–38. 18 R. Wrobel, Y. Suchorski, S. Becker, H. Weiss, Surf. Sci. 2008, 602, 436–442. 19 A. Siokou, R. M. Nix, J. Phys. Chem. B 1999, 103, 6984–6997. 20 F. Dvorak, O. Stetsovych, M. Steger, E. Cherradi, I. Matolínova, N. Tsud, M. Skoda, T. Skala, J. Myslivecek, V. Matolín, J. Phys. Chem. C 2011, 115, 7496–7503. 21 T. Staudt, Y. Lykhach, L. Hammer, M. A. Schneider, V. Matolín, J. Libuda, Surf. Sci. 2009, 603, 3382–3388. 22 S. Eck, C. Castellarin-Cudia, S. Surnev, M. G. Ramsey, F. P. Netzer, Surf. Sci. 2002, 520, 173–185. 23 M. Juel, S. Martinsen, S. Raaen, Thin Solid Films 2008, 517, 805–810. 24 E. J. Preisler, O. J. March, R. A. Beach, T. C. McGill, J. Vac. Sci. Technol. B 2001, 19, 1611–1618. 25 C. Mansilla, F. Yubero, M. Zier, R. Reiche, S. Oswald, J. P. Holgado, J. P. Espinos, A. R. Gonzales-Elipe, Surf. Interface Anal. 2006, 38, 510–513. 26 T. Chaudhuri, S. Phok, R. Bhattacharya, Thin Solid Films 2007, 515, 6971–6974. 27 C. Bigey, L. Hilaire, G. Maire, J. Catal. 2001, 198, 208–222. 28 W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Chem. Commun. 2011, 47, 8046–8048. 29 R. Eason (Ed), Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, John Wiley & Sons, Inc., Hoboken, New Jersey, 2007. 30 C. Gu, C. G. Olson, D. W. Lynch, Phys. Rev. B 1993, 48, 12178–12182. 31 T. Skála, N. Tsud, K. C. Prince, V. Matolín, J. Phys. Condens. Matter 2011, 23, 215001. 32 G. S. Wong, J. M. Vohs, Surf. Sci. 2002, 498, 266–274. 33 A. Kotani, T. Jo, J. C. Parlebas, Adv. Physiol. Educ. 1988, 37, 37–85. 34 J. P. Holgado, R. Alvarez, G. Munuera, Appl. Surf. Sci. 2000, 161, 301–315. 35 E. Paparrazo, Mater. Res. Bull. 2011, 46, 323–326. 36 C. Palacio, A. Arranz, J. Phys. D 2008, 41, 1–6. 37 A. Arranz, C. Palacio, Appl. Phys. A 2005, 81, 1405–1410. 38http://www.phy.cuhk.edu.hk/~surface/XPSPEAK/. 39 D. A. Shirley, Phys. Rev. B 1972, 5, 4709–4714. 40 S. Tougaard, Surf. Interface Anal. 1988, 11, 453–472. 41 S. Tougaard, Surf. Interface Anal. 1997, 25, 137–155. 42 S. Gusenleitner, D. Hauschild, T. Graber, D. Ehm, S. Tougaard, F. Reinert, Surf. Sci. 2013, 616, 161–165. 43 M. Maeder, Y-M. Neuhold, Practical Data Analysis in Chemistry, Vol. 26, Elsevier Science, 2007. 44http://digilander.libero.it/foxes/SoftwareDownload.htm. 45 M. Aronniemi, J. Sainio, J. Lahtinen, Surf. Sci. 2007, 601, 479–489. 46 E. R. Malinowski, Factor Analysis in Chemistry, third ed., Wiley, 2002. 47 H. F. Kaiser, Psychometrika 1958, 23, 187–200. 48 P. J. Gemperline, J. Chem. Inf. Comput. Sci. 1984, 24, 206–212. 49 J. N. Fiedor, A. Proctor, M. Houalla, D. M. Hercules, Surf. Interface Anal. 1993, 20, 1–9. 50 P. S. Bagus, C. J. Nelin, E. S. Ilton, M. Baron, H. Abbott, E. Primorac, H. Kuhlenbeck, S. Shaikhudnikov, H. -J. Freund, Chem. Phys. Letters 2010, 487, 237–240. 51 M. Romeo, K. Bak, J. El Fallah, F. Le Normand, L. Hilarie, Surf. Interface Anal. 1993, 20, 508–512. 52 A. Pfau, K. D. Schierbaum, Surf. Sci. 1994, 321, 71–80. 53 P. Burroughs, A. Hamnett, A. F. Orchard, G. Thornton, J. Chem. Soc. Dalton Trans. 1976, 17, 1686–1698. 54http://www.chemres.hu/aki/XMQpages/XMQhome.htm. 55 J. H. Scofield, J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. 56 S. Tanuma, C. J. Powell, D. R. Penn, Surf. Interface Anal. 1994, 21, 165–176. 57 L. J. LeGore, R. J. Lada, S. C. Moulzolf, J. F. Vetelino, B. G. Frederick, E. A. Kenike, Thin Solid Films 2002, 406, 79–86. 58 N. Alov, D. Kutsko, I. Spirovova, Z. Bastl, Surf. Sci. 2006, 600, 1628–1631. 59 N. V. Alov, Nucl. Instr. and Meth. in Phys. Res. B 2007, 256, 337–340. 60 J. Plšek, Z. Bastl, J. Catal. 2013, 299, 109–118. 61 G. Panov, K. Dubkov, E. Starokon, Catal. Today 2006, 117, 148–155. 62 Y. -X. Zhao, X. -N. Wu, J. -B. Ma, S. -G. He, X. -L. Ding, PCCP 2011, 13, 1925–1938. 63 J. Guzman, S. Carrettin, A. Corma, J. Am. Chem. Soc. 2005, 127, 3286–3287. 64 J. Xu, J. Harmer, G. Li, T. Chapman, P. Collier, Chem. Commun. 2010, 46, 1887–1889. 65 D. A. Creaser, P. G. Harrison, M. A. Morris, B. A. Wolfindale, Catal. Lett. 1994, 23, 13–24. 66 J. P. Holgado, G. Munuera, J. P. Espinós, A. R. Gonzáles-Elipe, Appl. Surf. Sci. 2000, 158, 164–171. 67 A. -S. Mamede, E. Payen, P. Grange, G. Poncelet, A. Ion, M. Alifanti, V. I. Pârvulescu, J. Catal. 2004, 223, 1–12. 68 S. Tsunekawa, T. Fukuda, A. Kasuya, Surf. Sci. Lett. 2000, 457, L437–L440. 69 A. Migani, G. N. Vayssilov, S. T. Bromley, F. Illas, K. M. Neyman, Chem. Commun. 2010, 46, 5936–593. 70 M. F. Koening, J. T. Grant, J. Electron Spectrosc. Relat. Phenom. 1986; 41, 145–156. 71 T. Skála, N. Tsud, M. Á. Niño Orti, T. O. Menteş, A. Locatelli, K. C. Prince, V. Matolín, Phys. Chem. Chem. Phys. 2011, 13, 7083–7089. Citing Literature Volume47, Issue6June 2015Pages 663-671 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX