X-ray action on polymeric membrane surfaces: a chemical and morphological characterization
2003; Wiley; Volume: 35; Issue: 4 Linguagem: Inglês
10.1002/sia.1542
ISSN1096-9918
AutoresM.J. Ariza, Pedro Prádanos, Ramón O. García-Rico, Enrique Rodríguez‐Castellón, J. Benavente,
Tópico(s)Recycling and Waste Management Techniques
ResumoSurface and Interface AnalysisVolume 35, Issue 4 p. 360-368 Research Article X-ray action on polymeric membrane surfaces: a chemical and morphological characterization M. J. Ariza, Corresponding Author M. J. Ariza [email protected] Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainDepartamento de Arquitectura, Area de Química Física, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain.Search for more papers by this authorP. Prádanos, P. Prádanos Departamento de Termodinámica y Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, SpainSearch for more papers by this authorR. Rico, R. Rico Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainSearch for more papers by this authorE. Rodríguez-Castellón, E. Rodríguez-Castellón Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainSearch for more papers by this authorJ. Benavente, J. Benavente Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainSearch for more papers by this author M. J. Ariza, Corresponding Author M. J. Ariza [email protected] Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainDepartamento de Arquitectura, Area de Química Física, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain.Search for more papers by this authorP. Prádanos, P. Prádanos Departamento de Termodinámica y Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, SpainSearch for more papers by this authorR. Rico, R. Rico Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainSearch for more papers by this authorE. Rodríguez-Castellón, E. Rodríguez-Castellón Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainSearch for more papers by this authorJ. Benavente, J. Benavente Departamento de Física Aplicada I, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, SpainSearch for more papers by this author First published: 13 March 2003 https://doi.org/10.1002/sia.1542Citations: 16AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The surfaces of six polymeric membranes—two polysulphone membranes, two composite reverse-osmosis polyamide/polysulphone membranes having polyamide as the active layer and two activated membranes containing di-2-ethylhexylphosphoric acid and di-2-ethylhexyldithiophosphoric acid as carriers, respectively—have been characterized before and after irradiation with an x-ray source, both chemically and topographically by XPS and atomic force microscopy (AFM), respectively. Changes in atomic concentrations of the characteristic elements of the membranes and in the shape of XPS spectra as a function of irradiation time can be related to chemical modifications on the membrane surface. The most significant changes have been observed for polysulphone, which is reduced by x-ray action; this fact also shows the inhomogeneity of the surface of the di-2-ethylhexyldithiophosphoric-activated membrane. In contrast, polyamide top layers of composite membranes have been shown to be the most stable. Chemical modifications are not related directly to changes in membrane roughness because for all membranes only small changes have been observed for AFM images recorded before and after membrane irradiation. Moreover, the roughness of both polysulphone membranes decreases slightly due to x-ray radiation but increases slightly for all polyamide-containing membranes (composite and activated membranes). Copyright © 2003 John Wiley & Sons, Ltd. REFERENCES 1Mulder M. Basic Principles of Membranes Technology ( 2nd edn). Kluwer Academic: New York, 1996. 10.1007/978-94-009-1766-8 Google Scholar 2Brizzolara RA, Boyd JL, Tate AE. J. Vac. Sci. Technol. A 1997; 15: 773. 10.1116/1.580706 CASWeb of Science®Google Scholar 3Ouyang M, Muisener RJ, Boulares A, Koberstein JT. J. Membr. Sci. 2000; 177: 177. 10.1016/S0376-7388(00)00471-3 CASWeb of Science®Google Scholar 4James PJ, Elliot JA, Mcmaster TJ, Newton JM, Elliot AMS, Hanna S, Miles MJ. J. Mater. Sci. 2000; 35: 5111. 10.1023/A:1004891917643 CASWeb of Science®Google Scholar 5Bowen WR, Hilal N, Lovitt RM, Sharif AO, Willians PM. J. Membr. Sci. 1997; 126: 77. 10.1016/S0376-7388(96)00275-X CASWeb of Science®Google Scholar 6Hernández A, Calvo JJ, Prádanos P, Palacio L, Rodríguez ML, de Soja JA. J. Membr. Sci. 1998; 137: 89. 10.1016/S0376-7388(97)00184-1 Web of Science®Google Scholar 7James PJ, Mcmaster TJ, Newton JM, Miles MJ. Polymer 2000; 41: 4223. 10.1016/S0032-3861(99)00641-2 CASWeb of Science®Google Scholar 8Fontyn M, Bijsterbosch BH, van't Riet K. J. Membr. Sci. 1987; 36: 141. 10.1016/0376-7388(88)80012-7 Web of Science®Google Scholar 9Ariza MJ, Rodríguez-Castellón E, Rico R, Benavente J, Muñoz M, Oleinikova M. J. Colloid Interface Sci. 2000; 226: 151. 10.1006/jcis.2000.6805 CASPubMedWeb of Science®Google Scholar 10Ariza MJ, Rodríguez-Castellón E, Rico R, Benavente J, Muñoz M, Oleinikova M. Surf. Interface Anal. 2000; 30: 430. 10.1002/1096-9918(200008)30:1 3.0.CO;2-K CASWeb of Science®Google Scholar 11Steen ML, Hymas L, Havey ED, Capps NE, Castner DG, Fisher ER. J. Memb. Sci. 2001; 188: 97. 10.1016/S0376-7388(01)00375-1 CASWeb of Science®Google Scholar 12Finot E, Roualdes S, Kirchner M, Rouessac V, Berjoan R, Durand J, Goudonnet JP, Cot L. Appl. Surf. Sci. 2002; 187: 326. 10.1016/S0169-4332(01)01047-9 CASWeb of Science®Google Scholar 13Kwak SY, Jung SG, Kim SH. Environ. Sci. Technol. 2001; 35: 4334. 10.1021/es010630g CASPubMedWeb of Science®Google Scholar 14Vilensky AI, Zagorski DL, Bystrov SA, Michailova SS, Gainutdinov RV, Nechaev AN. Surf. Sci. 2002; 507: 911. 10.1016/S0039-6028(02)01371-7 Web of Science®Google Scholar 15Ariza MJ, Benavente J, Rodríguez-Castellón E, Palacio L. J. Colloid Interface Sci. 2002; 247: 149. 10.1006/jcis.2001.8071 CASPubMedWeb of Science®Google Scholar 16Beamson G, Briggs D. In High Resolution XPS of Organic Polymers. John Wiley & Sons, Ltd: Chichester, 1992; 131. Google Scholar 17Copperthwaite RG. Surf. Interface Anal. 1980; 2: 17. 10.1002/sia.740020105 CASGoogle Scholar 18Munro HS, Clark DT. Polym. Degrad. Stabil. 1985; 11: 211. 10.1016/0141-3910(85)90045-X CASWeb of Science®Google Scholar 19Munro HS, Clark DT. Polym. Degrad. Stabil. 1987; 17: 319. 10.1016/0141-3910(87)90091-7 CASWeb of Science®Google Scholar 20Yates BW, Shinozaki DM. J. Mater. Res. 1992; 7: 520. 10.1557/JMR.1992.0520 CASWeb of Science®Google Scholar 21Iacona F, Marletta G. Nucl. Instrum. Methods Phys. Res. B 2000; 166/167: 676. 10.1016/S0168-583X(99)01186-6 Web of Science®Google Scholar 22Artynshkova K, Fulghum JE. Surf. Interface Anal. 2001; 31: 352. 10.1002/sia.953 Web of Science®Google Scholar 23Nazmov VP, Pindyurin VF, Mishnev SI, Yakovlevq EN. Nucl. Instrum. Methods Phys. Res. B 2001; 173: 311. 10.1016/S0168-583X(00)00385-2 CASWeb of Science®Google Scholar 24Yoshihara K, Tanaka A. In ECASIA 2001 Book of Abstracts, Avignon, France, 2001; 262. Google Scholar 25Coffey T, Urquhart SG, Ade H. J. Electron Spectrosc. Relat. Phenom. 2002; 122: 65. 10.1016/S0368-2048(01)00342-5 CASWeb of Science®Google Scholar 26Nabe A, Staude E, Belfort G. J. Membr. Sci. 1997; 133: 57. 10.1016/S0376-7388(97)00073-2 Web of Science®Google Scholar 27Wavhal DS, Fisher ER. J. Membr. Sci. 2002; 209: 255. 10.1016/S0376-7388(02)00352-6 CASWeb of Science®Google Scholar 28Suk DE, Pleizer G, Deslandes Y, Matsuura T. Desalination 2002; 149: 303. 10.1016/S0011-9164(02)00817-2 CASWeb of Science®Google Scholar 29Gumi T, Oleinikova M, Palet C, Valiente M, Muñoz M. Anal. Chim. Acta 2000; 408: 65. 10.1016/S0003-2670(99)00790-4 CASWeb of Science®Google Scholar 30Oleinikova M, Muñoz M, Benavente J, Valiente M. Langmuir 2000; 16: 716. 10.1021/la9903898 CASWeb of Science®Google Scholar 31Kocherginsky NM, Zhang YK, Stucki JW. Desalination 2002; 144: 267. 10.1016/S0011-9164(02)00326-0 CASWeb of Science®Google Scholar 32Ariza MJ, Cañas A, Benavente J. Colloids Surf. A: Physicochem. Aspects 2001; 189: 247. 10.1016/S0927-7757(01)00587-8 CASWeb of Science®Google Scholar 33Benavente J, Cañas A, Ariza MJ, Lozano AE, de Abajo J. Solid State Ion. 2001; 145: 53. 10.1016/S0167-2738(01)00913-4 CASWeb of Science®Google Scholar 34López GP, Castner DG, Ratner BD. Surf. Interface Anal. 1991; 17: 267. 10.1002/sia.740170508 CASWeb of Science®Google Scholar 35Moulder JF, Stickle WF, Sobol PE, Bomben KD. In Handbook of X-ray Photoelectron Spectroscopy, J Chastain (ed.). Perking-Elmer: Minneapolis, MN, 1992; 252–253. Google Scholar 36Briggs D, Seah MP. In Practical Surface Analysis: Auger and X-Ray Photoelectron Spectroscopy ( 2nd edn). John Wiley & Sons, Ltd: Chichester, 1995; 555–586. Google Scholar 37 MultiMode™ Scanning Probe Microscope Instruction Manual. Digital Instruments: Santa Barbara, (USA), 1996/97. Google Scholar 38NIST X-ray Photoelectron Spectroscopy Database (v.2.0), Standard Reference Data Program. NIST: Gaithersburg, MD, 1997. Google Scholar Citing Literature Volume35, Issue4April 2003Pages 360-368 ReferencesRelatedInformation
Referência(s)