Artigo Acesso aberto Produção Nacional Revisado por pares

Endothelium-dependent and -independent vasodilator effects of eugenol in the rat mesenteric vascular bed

2003; Oxford University Press; Volume: 55; Issue: 3 Linguagem: Inglês

10.1211/002235702694

ISSN

2042-7158

Autores

David N. Criddle, Socorro Vanesca Frota Madeira, Roberto Soares de Moura,

Tópico(s)

Eicosanoids and Hypertension Pharmacology

Resumo

Abstract The possible involvement of the endothelium in the vasodilator action of eugenol was investigated in the mesenteric vascular bed (MVB) of the rat. Bolus injections of eugenol (0.2, 2 and 20 μmol) and acetylcholine (ACh; 10, 30 and 100 pmol) induced dose-dependent vasodilator responses in noradrenaline-precontracted beds that were partially inhibited by pretreatment of the MVB with deoxycholate (1 mg mL−1) to remove the endothelium (˜ 14% and ˜ 30% of the control response remaining at the lowest doses of ACh and eugenol, respectively). The vasodilator effect of glyceryl trinitrate (1 μmol) was unaltered by deoxycholate. In the presence of either Nω-nitro-L-arginine methyl ester (300 μM) or tetra-ethylammonium (1 mM) the response to ACh was partially reduced, whereas eugenol-induced vasodilation was unaffected. Similarly the vasodilator effect of eugenol was not inhibited by indometacin (3 μM). Under calcium-free conditions the vasoconstrictor response elicited by bolus injections of noradrenaline (10 nmol) was dose-dependently and completely inhibited by eugenol (0.1–1 mM). Additionally, the pressor effects of bolus injections of calcium chloride in potassium-depolarized MVBs were greatly reduced in the presence of eugenol (0.1 mM), with a maximal reduction of ˜ 71% of the control response. Our data showed that eugenol induced dose-dependent, reversible vasodilator responses in the rat MVB, that were partially dependent on the endothelium, although apparently independent of nitric oxide, endothelium-derived hyperpolarizing factor or prostacyclin. Furthermore, an endothelium-independent intracellular site of action seemed likely to participate in its smooth muscle relaxant properties.

Referência(s)