Artigo Revisado por pares

Mechanistische Aspekte der Diels-Alder-Reaktion: Ein kritischer Rückblick

1980; Wiley; Volume: 92; Issue: 10 Linguagem: Alemão

10.1002/ange.19800921004

ISSN

1521-3757

Autores

Juergen Sauer, Reiner Sustmann,

Tópico(s)

Asymmetric Synthesis and Catalysis

Resumo

Angewandte ChemieVolume 92, Issue 10 p. 773-801 Aufsatz Mechanistische Aspekte der Diels-Alder-Reaktion: Ein kritischer Rückblick† Prof. Dr. Jürgen Sauer, Prof. Dr. Jürgen Sauer Institut für Organische Chemie der Universität Universitätsstraße 31, D-8400 RegensburgSearch for more papers by this authorProf. Dr. Reiner Sustmann, Prof. Dr. Reiner Sustmann Institut für Organische Chemie der Universität Universitätsstraße 31, D-8400 Regensburg Fachbereich Chemie der Universität Universitätsstraße 5, D-4300 EssenSearch for more papers by this author Prof. Dr. Jürgen Sauer, Prof. Dr. Jürgen Sauer Institut für Organische Chemie der Universität Universitätsstraße 31, D-8400 RegensburgSearch for more papers by this authorProf. Dr. Reiner Sustmann, Prof. Dr. Reiner Sustmann Institut für Organische Chemie der Universität Universitätsstraße 31, D-8400 Regensburg Fachbereich Chemie der Universität Universitätsstraße 5, D-4300 EssenSearch for more papers by this author First published: Oktober 1980 https://doi.org/10.1002/ange.19800921004Citations: 382 † Professor Rolf Huisgen zum 60. Geburtstag gewidmet AboutPDF ToolsRequest permissionAdd to favorites ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Die Frage nach dem zeitlichen Ablauf der Bindungsschließung stellt sich bei allen Typen von Cycloadditionsreaktionen. Durch stereochemische Untersuchungen und Studien zur Regiospezifität sowie intensive kinetische Untersuchungen unter Berücksichtigung von Substituenten- und Solvenseffekten sowie Temperatur- und Druckabhängigkeit der Reaktion lassen sich in vielen Fällen mechanistische Aussagen über die Diels-Alder-Reaktion gewinnen. Theoretische Interpretationsversuche, ab-initio- und semiempirische Berechnungen, Modellbetrachtungen, die Anwendung der Grenzorbital-(FMO-)Methode sowie thermochemische Messungen ermöglichen eine Beschreibung der Energiehyperfläche dieser [4 + 2]-Cycloadditionen. Es wird versucht, unter Einschluß aller experimentellen und theoretischen Kriterien eine Abgrenzung der mechanistischen Alternativen – Einstufenreaktion versus Zweistufenreaktion – zu erreichen. References 1 O. Diels, K. Alder, Justus Liebigs Ann. Chem. 460, 98 (1928). 10.1002/jlac.19284600106 CASWeb of Science®Google Scholar 2 Zur Definition von Cycloadditionen siehe R. Huisgen, Angew. Chem. 80, 329 (1968); 10.1002/ange.19680800902 Google Scholar Angew. Chem. Int. Ed. Engl. 7, 321 (1968). 10.1002/anie.196803211 CASWeb of Science®Google Scholar 3 Den Literaturzugang bis 1967 findet man bei J. Sauer, Angew. Chem. 78, 233 (1966); 10.1002/ange.19660780403 Google Scholar Angew. Chem. 76, 76 (1967); Google Scholar Angew. Chem. Int. Ed. Engl. 5, 211 (1966); 10.1002/anie.196602111 CASWeb of Science®Google Scholar Angew. Chem. Int. Ed. Engl. 6, 16 (1967). 10.1002/anie.196700161 CASWeb of Science®Google Scholar 4 A. Wassermann: Diels-Alder-Reactions. Elsevier, New York 1965. Google Scholar 5 G. B. Kistiakowsky, W. W. Ransom, J. Chem. Phys, 7, 725 (1939) und frühere Arbeiten. 10.1063/1.1750519 CASWeb of Science®Google Scholar 6 J. Sauer, H. Wiest, Angew. Chem. 74, 353 (1962); 10.1002/ange.19620741006 CASWeb of Science®Google Scholar Angew. Chem. Int. Ed. Engl. 1, 269 (1962). Web of Science®Google Scholar 7 J. Sauer, H. Wiest, A. Mielert, Chem. Ber. 97, 3183 (1964). 10.1002/cber.19640971129 CASWeb of Science®Google Scholar 8 J. Sauer, D. Lang, H. Wiest, Chem. Ber. 97, 3208 (1964). 10.1002/cber.19640971130 CASWeb of Science®Google Scholar 9 P. Yates, P. Eaton, J. Am. Chem. Soc. 82, 4436 (1960). 10.1021/ja01501a085 CASWeb of Science®Google Scholar 10 R. B. Woodward, R. Hoffmann: Die Erhaltung der Orbitalsymmetrie. Verlag Chemie, Weinheim 1970; Google Scholar Angew. Chem. 81, 797 (1969); 10.1002/ange.19690812102 Web of Science®Google Scholar Angew. Chem. Int. Ed. Engl. 8, 781 (1969). 10.1002/anie.196907811 CASWeb of Science®Google Scholar 11 R. Hoffmann, R. B. Woodward, Acc. Chem. Res. 1, 17 (1968). 10.1021/ar50001a003 CASWeb of Science®Google Scholar 12 Orbital Symmetry Papers, ACS Reprint Collections 1974. Google Scholar 13 A. P. Marchand, R. E. Lehr: Pericyclic Reactions. Vol. I und II. Academic Press, New York 1977. Google Scholar 14 Ab-initio-Berechnungen für vershiedene Cycloadditionen siehe [ 14–18]; Google Scholar L. A. Burke, G. Leroy, M. Sana, Theor. Chim. Acta 40, 313 (1975); 10.1007/BF00668337 CASWeb of Science®Google Scholar L. A. Burke, G. Leroy, Theor. Chim. Acta 44, 219 (1977). 10.1007/BF00549104 CASWeb of Science®Google Scholar 15 D. Poppinger, J. Am. Chem. Soc. 97, 7486 (1975). 10.1021/ja00859a017 CASWeb of Science®Google Scholar 16 R. F. Townshend, G. Ramunni, G. Segal, W. J. Hehre, L. Salem, J. Am. Chem. Soc. 98, 2190 (1976). 10.1021/ja00424a031 CASWeb of Science®Google Scholar 17 P. Caramella, K. N. Houk, L. N. Domelsmith, J. Am. Chem. Soc. 99, 4511 (1977). 10.1021/ja00455a056 CASWeb of Science®Google Scholar 18 A. Komornicki, J. D. Goddard, H. F. Schaefer III, J. Am. Chem. Soc. 102, 1763 (1980). 10.1021/ja00526a001 CASWeb of Science®Google Scholar 19 Literaturzusammenfassung: M. J. S. Dewar, S. Olivella, H. S. Rzepa, J. Am. Chem. Soc. 100, 5650 (1978). 10.1021/ja00486a013 CASWeb of Science®Google Scholar 20 K. Fukui, Fortschr. Chem. Forsch. 15, 1 (1970); 10.1007/BFb0051113 Google Scholar Acc. Chem. Res. 4, 57 (1971). 10.1021/ar50038a003 CASWeb of Science®Google Scholar 21 W. C. Herndon, Chem. Rev. 72, 157 (1972). 10.1021/cr60276a003 CASWeb of Science®Google Scholar 22 K. N. Houk, Acc. Chem. Res. 8, 361 (1975). 10.1021/ar50095a001 CASWeb of Science®Google Scholar 23 R. Sustmann, Pure Appl. Chem. 40, 569 (1974). 10.1351/pac197440040569 CASWeb of Science®Google Scholar 24 K. Fukui: Theory of Orientation and Stereoselection, in: Reactivity and Structure Concepts in Organic Chemistry. Vol. 2. Springer, Berlin 1975. Google Scholar 25 N. D. Epiotis: Theory of Organic Reactions, in: Reactivity and Structure Concepts in Organic Chemistry. Vol. 5. Springer, Berlin 1978. Google Scholar 26 N. T. Anh, E. Canadell, O. Eisenstein, Tetrahedron 34, 2283 (1978). 10.1016/0040-4020(78)89039-5 Web of Science®Google Scholar 27 R. Huisgen, Acc. Chem. Res. 10, 117 (1977). 10.1021/ar50112a003 CASWeb of Science®Google Scholar 28 R. Huisgen, Acc. Chem. Res. 10, 199 (1977). 10.1021/ar50114a002 CASWeb of Science®Google Scholar 29 Alternative mechanistische Diskussion für [3 + 2]-Cycloadditionen siehe [29–33]; R. Huisgen, J. Org. Chem. 41, 403 (1976). 10.1021/jo00865a001 CASWeb of Science®Google Scholar 30 R. Huisgen, J. Org. Chem. 33, 2291 (1968). 10.1021/jo01270a024 CASWeb of Science®Google Scholar 31 R. A. Firestone Tetrahedron 33, 3009 (1977). 10.1016/0040-4020(77)80448-1 CASWeb of Science®Google Scholar 32 R. A. Firestone, J. Org. Chem. 37, 2181 (1972). 10.1021/jo00978a027 CASWeb of Science®Google Scholar 33 R. A. Firestone, J. Org. Chem. 33, 2285 (1968). 10.1021/jo01270a023 CASWeb of Science®Google Scholar 34 J. Hamer: 1,4-Cycloaddition Reactions. Academic Press, New York 1967. Google Scholar 35 Retro-Diels-Alder-Reaktionen: H. Kwart, K. King, Chem. Rev. 68, 415 (1968); 10.1021/cr60254a002 CASWeb of Science®Google Scholar J. L. Ripoll, A. Rouessac, F. Rouessac, Tetrahedron 34, 19 (1978). 10.1016/0040-4020(78)88032-6 CASWeb of Science®Google Scholar 36 H. Wollweber: Diels-Alder-Reaktion. Thieme, Stuttgart 1972. Google Scholar 37 P. Beltrame, Addition of Unsaturated Compounds to Each Other, in Comprehensive Chemical Kinetics 9, 87 (1973). CASGoogle Scholar 38 C. K. Bradsher, Cationic Polar Cycloaddition, in Adv. Heterocycl. Chem. 16, 289 (1974). 10.1016/S0065-2725(08)60463-8 CASGoogle Scholar 39 G. Desimoni, G. Tacconi, Chem. Rev. 75, 651 (1975). 10.1021/cr60298a001 CASWeb of Science®Google Scholar 40 W. Oppolzer, Angew. Chem. 89, 10 (1977); 10.1002/ange.19770890105 CASWeb of Science®Google Scholar Angew. Chem. Int. Ed. Engl. 16, 10 (1977). 10.1002/anie.197700101 CASWeb of Science®Google Scholar 41 Druckabhängigkeit: T. Asano, W. J. le Noble, Chem. Rev. 78, 407 (1978); 10.1021/cr60314a004 CASWeb of Science®Google Scholar J. R. McCabe, C. A. Eckert, Acc. Chem. Res. 7, 251 (1974); 10.1021/ar50080a003 CASWeb of Science®Google Scholar vgl. G. Jenner, Angew. Chem. 87, 186 (1975); 10.1002/ange.19750870603 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 14, 137 (1975); 10.1002/anie.197501371 Web of Science®Google Scholar W. J. le Noble, H. Kelm, Angew. Chem., im Druck. Google Scholar 42 S. M. Weinreb, J. I. Levin, Heterocycles 12, 949 (1979). 10.3987/R-1979-07-0949 CASWeb of Science®Google Scholar 43 Siehe z. B. T. H. Lowry, K. E. Schueller-Richardson: Mechanism and Theory in Organic Chemistry. Harper & Row, New York1976. Google Scholar 44 M. V. Basilevsky, A. G. Shamov, V. A. Tikhomirov, J. Am. Chem. Soc. 99, 1369 (1977). 10.1021/ja00447a014 Web of Science®Google Scholar 45 K. Jug, H.-W. Krüger, Theor. Chim. Acta 52, 19 (1979). 10.1007/BF00581697 CASWeb of Science®Google Scholar 46 M. J. S. Dewar, A. C. Griffin, S. Kirschner, J. Am. Chem. Soc. 96, 6225 (1974). 10.1021/ja00826a068 CASWeb of Science®Google Scholar 47 O. Kikuchi, Tetrahedron 27, 2791 (1971). 10.1016/S0040-4020(01)98070-6 CASWeb of Science®Google Scholar 48 Kritische Würdigung verschiedener theoretischer Verfahren siehe: W. Kutzelnigg, Pure Appl. Chem. 49, 981 (1977). 10.1351/pac197749070981 CASWeb of Science®Google Scholar 49 A. Oliva, J. I. Fernandez-Alonso, J. Bertran, Tetrahedron 34, 2029 (1978). 10.1016/0040-4020(78)80114-8 CASWeb of Science®Google Scholar 50 K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20, 722 (1952). 10.1063/1.1700523 CASWeb of Science®Google Scholar 51 N. T. Anh: Die Woodward-Hoffmann-Regeln und ihre Anwendung. Verlag Chemie, Weinheim 1972. Google Scholar 52 R. E. Lehr, A. P. Marchand: Orbital Symmetry. Academic Press, New York 1972. Google Scholar 53 M. J. S. Dewar, Angew. Chem. 83, 859 (1971); 10.1002/ange.19710832202 Google Scholar Angew. Chem. Int. Ed. Engl. 10, 761 (1971). 10.1002/anie.197107611 CASWeb of Science®Google Scholar 54 H. E. Zimmerman, Acc. Chem. Res. 4, 272 (1971); 10.1021/ar50044a002 CASWeb of Science®Google Scholar siehe auch H. E. Zimmerman in [13], Vol. I. Google Scholar 55 K. N. Houk in [13], Vol. II. Google Scholar 56 I. Fleming: Frontier Orbitals and Organic Chemical Reactions. Wiley, New York 1976; Google Scholar siehe auch K.-L. Mok, M. J. Nye, J. Chem. Soc. Perkin Trans. I 1975, 1810. Google Scholar 57 R. Sustmann, Tetrahedron Lett. 1971, 2717. Google Scholar 58 M. J. S. Dewar, R. C. Dougherty: The PMO-Theory of Organic Chemistry. Plenum Press, New York 1975. 10.1007/978-1-4613-4404-9 Google Scholar 59 W. L. Jorgensen, L. Salem: Orbitale organischer Moleküle. Verlag Chemie, Weinheim 1974. Google Scholar 60 R. F. Hudson, Angew. Chem. 85, 63 (1973); 10.1002/ange.19730850203 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 12, 36 (1973). 10.1002/anie.197300361 Web of Science®Google Scholar 61 K. N. Houk, J. Am. Chem. Soc. 95, 4092 (1973); 10.1021/ja00793a069 CASWeb of Science®Google Scholar K. N. Houk, J. Sims, C. R. Watts, L. J. Lushus, J. Am. Chem. Soc. 95, 7301 (1973). 10.1021/ja00803a018 CASWeb of Science®Google Scholar 62 J. Feuer, W. C. Herndon, L. H. Hall, Tetrahedron 24, 2575 (1968). 10.1016/S0040-4020(01)82530-8 CASWeb of Science®Google Scholar 63 O. Eisenstein, J. M. Lefour, N. T. Anh, Chem. Commun. 1971, 969; Google Scholar O. Eisenstein, J. M. Lefour, N. T. Anh, R. F. Hudson, Tetrahedron 33, 523 (1977). 10.1016/0040-4020(77)80056-2 CASWeb of Science®Google Scholar 64 G. Klopman, R. F. Hudson, Theor. Chim. Acta 8, 165 (1967); 10.1007/BF00526373 CASWeb of Science®Google Scholar G. Klopman, J. Am. Chem. Soc. 90, 223 (1968). 10.1021/ja01004a002 CASWeb of Science®Google Scholar 65 R. Sustmann G. Binsch, Mol. Phys. 20, 1, 9 (1970). 10.1080/00268977100100011 Web of Science®Google Scholar 66 R. Sustmann, A. Ansmann, F. Vahrenholt, J. Am. Chem. Soc. 94, 8099 (1972). 10.1021/ja00778a028 CASWeb of Science®Google Scholar 67 V. Bachler, F. Mark, Theor. Chim. Acta 43, 121 (1976). 10.1007/BF00547252 CASWeb of Science®Google Scholar 68 V. Bachler, F. Mark, Tetrahedron 33, 2857 (1977). 10.1016/0040-4020(77)80281-0 CASWeb of Science®Google Scholar 69 L. Salem, J. Am. Chem. Soc. 90, 543 (1968). 10.1021/ja01005a001 CASWeb of Science®Google Scholar 70 L. Salem, J. Am. Chem. Soc. 90, 553 (1968). 10.1021/ja01005a002 CASWeb of Science®Google Scholar 71 E. A. Halevi, Angew. Chem. 88, 664 (1976); 10.1002/ange.19760882003 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 15, 593 (1976). 10.1002/anie.197605931 Web of Science®Google Scholar 72 H. Fujimoto, S. Inagaki, K. Fukui, J. Am. Chem. Soc. 98, 2670 (1976). 10.1021/ja00425a048 CASWeb of Science®Google Scholar 73 H. Fujimoto, T. Sugiyama, J. Am. Chem. Soc. 99, 15 (1977). 10.1021/ja00443a004 CASWeb of Science®Google Scholar 74 W. Th. A. M. van der Lugt, L. J. Oosterhoff, J. Am. Chem. Soc. 91, 6042 (1969). 10.1021/ja01050a019 CASWeb of Science®Google Scholar 75 J. Michl, Top. Curr. Chem. 46, 1 (1974). 10.1007/BFb0009221 CASGoogle Scholar 76 N. D. Epiotis, Angew. Chem. 86, 825 (1974); 10.1002/ange.19740862302 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 13, 751 (1974). 10.1002/anie.197407511 Web of Science®Google Scholar 77 N. D. Epiotis, S. Shaik, J. Am. Chem. Soc. 100, 1, 9 (1978). 10.1021/ja00469a001 CASWeb of Science®Google Scholar 78 K. Fukui, H. Fujimoto, Bull. Soc. Chim. Jpn. 41, 1989 (1968). 10.1246/bcsj.41.1989 CASWeb of Science®Google Scholar 79 T. Minato, S. Yamabe, S. Inagaki, H. Fujimoto, K. Fukui, Bull. Soc. Chim. Jpn. 47, 1619 (1974). 10.1246/bcsj.47.1619 CASWeb of Science®Google Scholar 80 R. Sustmann, F. Vahrenholt, Theor. Chim. Acta 29, 305 (1973). 10.1007/BF00532186 CASWeb of Science®Google Scholar 81 R. Sustmann, E. Wenning, R. Huisgen, Tetrahedron Lett. 1977, 877. Google Scholar 82 H. Metiu, J. Ross, G. M. Whitesides, Angew. Chem. 91, 363 (1979); 10.1002/ange.19790910504 Google Scholar Angew. Chem. Int. Ed. Engl. 18, 377 (1979). 10.1002/anie.197903771 Web of Science®Google Scholar 83 S. W. Benson: Thermochemical Kinetics. 2. Aufl. Wiley, New York 1978. Google Scholar 84 D. Rowley, H. Steiner, Disc. Faraday Soc. 10, 198 (1951). 10.1039/df9511000198 Google Scholar 85 W. E. Vaughan, J. Am. Chem. Soc. 54, 3863 (1932). 10.1021/ja01349a008 CASWeb of Science®Google Scholar 86 G. Huybrechts, L. Luyckx, Th. Vandenboom, B. van Mele, Iint. J. Chem. Kinet. 9, 283 (1977). 10.1002/kin.550090211 CASWeb of Science®Google Scholar 87 G. B. Kistiakowsky, J. R. Lacher, J. Am. Chem. Soc. 58, 123 (1936). 10.1021/ja01292a040 Web of Science®Google Scholar 88 W. E. Vaughan, J. Am. Chem. Soc. 55, 4109 (1933). 10.1021/ja01337a028 CASGoogle Scholar 89 J. B. Harkness, G. B. Kistiakowsky, W. H. Mears, J. Chem. Phys. 5, 682 (1937). 10.1063/1.1750100 CASWeb of Science®Google Scholar 90 G. A. Benford, A. Wassermann, J. Chem. Soc. 1939, 362. Google Scholar 91 G. R. Schultze, Oel, Kohle, Erdoel, Teer 14, 113 (1938). CASGoogle Scholar 92 G. R. De Mare, G. Huybrechts, M. Toth, P. Goldfinger, Trans. Faraday Soc. 67, 1397 (1971). 10.1039/tf9716701397 CASWeb of Science®Google Scholar 93 G. Huybrechts, G. Paternoster, P. Baetens, Int. J. Chem. Kinet. 8, 641 (1976). 10.1002/kin.550080502 CASWeb of Science®Google Scholar 94 G. Debande, G. Huybrechts, Int. J. Chem. Kinet. 6, 545 (1974). 10.1002/kin.550060410 CASWeb of Science®Google Scholar 95 G. Huybrechts, G. Ngoy, Int. J. Chem. Kinet. 7, 775 (1975). 10.1002/kin.550070512 CASWeb of Science®Google Scholar 96 R. Walsh, J. M. Wells, Int. J. Chem. Kinet. 7, 319 (1975). 10.1002/kin.550070302 CASWeb of Science®Google Scholar 97 R. Walsh, J. M. Wells, J. Chem. Soc. Perkin Trans. II 1976, 52. Google Scholar 98 H. M. Frey, R. Pottinger, J. Chem. Soc. Faraday Trans. I 74, 1827 (1978). 10.1039/f19787401827 CASWeb of Science®Google Scholar 99 W. v. E. Doering, M. Franck-Neumann, D. Hasselmann, R. L. Kaye, J. Am. Chem. Soc. 94, 3833 (1972). 10.1021/ja00766a029 CASWeb of Science®Google Scholar 100 L. M. Stephenson, R. V. Gemmer, S. Current, J. Am. Chem. Soc. 97, 5909 (1975). 10.1021/ja00853a043 CASWeb of Science®Google Scholar 101 J. A. Berson, R. Malherbe, J. Am. Chem. Soc. 97, 5910 (1975). 10.1021/ja00853a044 CASWeb of Science®Google Scholar 102 W. J. le Noble, A. R. Miller, S. D. Hamann, J. Org. Chem. 42, 338 (1977). 10.1021/jo00422a035 CASWeb of Science®Google Scholar 103 J. E. Critchlow, J. Chem. Soc. Faraday Trans. I 68, 1774 (1972). 10.1039/f19726801774 CASWeb of Science®Google Scholar 104 J. J. Gajewski, J. Am. Chem. Soc. 101, 4393 (1979). 10.1021/ja00509a067 CASWeb of Science®Google Scholar 105 R. Sustmann, D. Brandes, Chem. Ber. 109, 354 (1976); 10.1002/cber.19761090136 CASWeb of Science®Google Scholar R. Sustmann, H. Trill, D. Brandes, Chem. Ber. 110, 245 (1977); 10.1002/cber.19771100124 CASWeb of Science®Google Scholar R. Sustmann, H. Trill, F. Vahrenholt, D. Brandes, Chem. Ber. 110, 255 (1977). 10.1002/cber.19771100125 CASWeb of Science®Google Scholar 106(a) J. M. Bollinger, J. M. Brinich, G. A. Olah, J. Am. Chem. Soc. 92, 4025 (1970); 10.1021/ja00716a033 CASWeb of Science®Google Scholar(b) G. A. Olah, J. M. Bollinger, J. Am. Chem. Soc. 90, 6085 (1968); Google Scholar(c) P. v. R. Schleyer, T. M. Su, M. Saunders, J. C. Rosenfeld, J. Am. Chem. Soc. 91, 5174 (1969); 10.1021/ja01046a049 CASWeb of Science®Google Scholar(d) N. C. Deno, R. C. Haddon, E. N. Nowak, J. Am. Chem. Soc. 92, 6691 (1970). 10.1021/ja00725a079 CASWeb of Science®Google Scholar 107 T. B. Thompson, W. T. Ford, J. Am. Chem. Soc. 101, 5459 (1979); 10.1021/ja00513a001 CASWeb of Science®Google Scholar siehe auch S. W. Staley in [13], Vol. II. Auch die unkatalysierten sowie die durch AlCl3 katalysierten [4 + 2]-Cycloadditionen von Malein- und Fumarsäuredimethylester an Cyclopentadien verlaufen innerhalb der Fehlergrenze der GC-Analyse (99.99%) stereospezifisch: B. Prantl, J. Sauer, unveröffentlicht. Google Scholar 108 J. B. Lambert, J. D. Roberts, Tetrahedron Lett. 1965, 1457. Google Scholar 109 P. D. Bartlett, J. J.-B. Mallet, J. Am. Chem. Soc. 98, 143 (1976). 10.1021/ja00417a022 CASWeb of Science®Google Scholar 110 V. Mark, J. Org. Chem. 39, 3179, 3181 (1974). 10.1021/jo00935a042 CASWeb of Science®Google Scholar 111 K. Seguchi, A. Sera, K. Maruyama, Bull. Chem. Soc. Jpn. 49, 3558 (1976). 10.1246/bcsj.49.3558 CASWeb of Science®Google Scholar 112 J. B. Lambert, C. D. McLaughlin, V. Mark, Tetrahedron 32, 2075 (1976). 10.1016/0040-4020(76)85111-3 CASWeb of Science®Google Scholar 113 G. Huybrechts, B. van Mele, Int. J. Chem. Kinet. 10, 1183 (1978). 10.1002/kin.550101108 CASWeb of Science®Google Scholar 114 A. Krantz, J. Am. Chem. Soc. 94, 4020 (1972). 10.1021/ja00766a067 CASWeb of Science®Google Scholar 115 J. A. Berson, P. B. Dervan, R. Malherbe, J. A. Jenkins, J. Am. Chem. Soc. 98, 5937 (1976); 10.1021/ja00435a031 CASWeb of Science®Google Scholar J. A. Berson, R. Malherbe, J. Am. Chem. Soc. 97, 5910 (1975). 10.1021/ja00853a044 CASWeb of Science®Google Scholar 116 J. Mulzer, Universität München, persönliche Mitteilung; Habilitationsarbeit, Universität München 1979. Google Scholar 117 Das komplette Energieprofil wurde durch kinetische Messungen erschlossen: M. W. Lee, W. C. Herndon, J. Org. Chem. 43, 518 (1978). 10.1021/jo00397a031 CASWeb of Science®Google Scholar 118 H. R. Gerberich, W. D. Walters, J. Am. Chem. Soc. 83, 3935, 4884 (1961). 10.1021/ja01480a002 CASWeb of Science®Google Scholar 119 G. Scacchi, R. Richard, M. H. Back Int. J. Chem. Kinet. 9, 513 (1977); 10.1002/kin.550090402 CASWeb of Science®Google Scholar G. Scacchi, M. H. Back, Int. J. Chem. Kinet. 9, 525 (1977). 10.1002/kin.550090403 CASWeb of Science®Google Scholar 120 P. B. Dervan, T. Uyehara, J. Am. Chem. Soc. 98, 1262 (1976); 10.1021/ja00421a037 CASWeb of Science®Google Scholar Relative Geschwindigkeiten von Rotation, Spaltung und Ringschluß für das 1,4-Diradikal Dideuteriotetramethylen: P. B. Dervan, D. S. Santilli, J. Am. Chem. Soc. 102, 3863 (1980). 10.1021/ja00531a031 CASWeb of Science®Google Scholar 121 P. D. Bartlett, Q. Rev. Chem. Soc. 24, 473 (1970). 10.1039/qr9702400473 CASGoogle Scholar 122 L. K. Montgomery, K. Schueller, P. D. Bartlett, J. Am. Chem. Soc. 86, 622 (1964). 10.1021/ja01058a017 CASWeb of Science®Google Scholar 123 P. D. Bartlett, L. K. Montgomery, J. Am. Chem. Soc. 86, 628 (1964). 10.1021/ja01058a018 CASWeb of Science®Google Scholar 124 C. Rücker, D. Lang, J. Sauer, H. Friege, R. Sustmann, Chem. Ber. 113, 1663 (1980). 10.1002/cber.19801130505 CASWeb of Science®Google Scholar 125 P. D. Bartlett, G. E. H. Wallbillich, A. S. Wingrove, J. S. Swenton, L. K. Montgomery, B. D. Kramer, J. Am. Chem. Soc. 90, 2049 (1968); 10.1021/ja01010a025 CASWeb of Science®Google Scholar zur Temperaturabhängigkeit bei Verwendung von Butadien: J. S. Swenton, P. D. Bartlett, J. Am. Chem. Soc. 90, 2056 (1968). 10.1021/ja01010a026 CASWeb of Science®Google Scholar 126 R. Wheland, P. D. Bartlett, J. Am. Chem. Soc. 92, 3822 (1970). 10.1021/ja00715a065 CASWeb of Science®Google Scholar 127 D. Craig, J. J. Shipman, R. B. Fowler, J. Am. Chem. Soc. 83, 2885 (1961). 10.1021/ja01474a023 CASWeb of Science®Google Scholar 128 R. Huisgen, R. Schug, J. Am. Chem. Soc. 98, 7819 (1976). 10.1021/ja00440a060 CASWeb of Science®Google Scholar 129 F. Kataoka, N. Shimizu, S. Nishida, J. Am. Chem. Soc. 102, 711 (1980). 10.1021/ja00522a045 CASWeb of Science®Google Scholar 130 R. Huisgen, J. P. Ortega, Tetrahedron Lett. 1978, 3975. Google Scholar 131 J. G. Martin, R. K. Hill, Chem. Rev. 61, 537 (1961). 10.1021/cr60214a001 CASWeb of Science®Google Scholar 132 Yu. A. Titov, Russ. Chem. Rev. 31, 267 (1962). 10.1070/RC1962v031n05ABEH001285 Web of Science®Google Scholar 133 N. D. Epiotis, J. Am. Chem. Soc. 95, 5624 (1973). 10.1021/ja00798a029 CASWeb of Science®Google Scholar 134 I. Fleming, J. P. Michael, L. E. Overman, G. F. Taylor, Tetrahedron Lett. 1978, 1313. Google Scholar 135 C. Minot, N. T. Anh Tetrahedron 33, 533 (1977). 10.1016/S0040-4020(77)80011-2 CASWeb of Science®Google Scholar 136 R. B. Woodward, T. J. Katz, Tetrahedron 5, 70 (1959). 10.1016/0040-4020(59)80072-7 CASWeb of Science®Google Scholar 137 R. Häussinger, G. Kresze, Tetrahedron 34, 689 (1978); 10.1016/0040-4020(78)88105-8 Web of Science®Google Scholar G. Kresze, A. Mavromatis, Tetrahedron 34, 697 (1978); 10.1016/0040-4020(78)88106-X CASWeb of Science®Google Scholar siehe auch G. Kresze, J. Firl, Fortschr. Chem. Forsch. 11, 245 (1969). 10.1007/BFb0050700 CASGoogle Scholar 138 Z. Stojanac, R. A. Dickinson, N. Stojanac, R. J. Woznow, Z. Valenta, Can. J. Chem. 53, 616 (1975); 10.1139/v75-086 CASWeb of Science®Google Scholar B. M. Trost, J. Ippen, W. C. Vladuchik, J. Am. Chem. Soc. 99, 8116 (1977); 10.1021/ja00466a090 CASWeb of Science®Google Scholar H.-J. Liu, E. N. C. Browne, Can. J. Chem. 57, 377 (1979). 10.1139/v79-062 CASWeb of Science®Google Scholar 139 M. Kakushima, J. Espinosa, Z. Valenta, Can. J. Chem. 54, 3304 (1976). 10.1139/v76-473 CASWeb of Science®Google Scholar 140 N. T. Anh, J. Seyden-Penne, Tetrahedron 29, 3259 (1973). 10.1016/S0040-4020(01)93470-2 Web of Science®Google Scholar 141 K. N. Houk, R. W. Strozier, J. Am. Chem. Soc. 95, 4094 (1973). 10.1021/ja00793a070 CASWeb of Science®Google Scholar 142 P. V. Alston, R. M. Ottenbrite, J. Org. Chem. 40, 1111 (1975). 10.1021/jo00896a026 CASWeb of Science®Google Scholar 143 P. V. Alston, R. M. Ottenbrite, D. D. Shillady, J. Org. Chem. 38, 4075 (1973). 10.1021/jo00987a031 CASWeb of Science®Google Scholar 144 P. V. Alston, R. M. Ottenbrite, T. Cohen, J. Org. Chem. 43, 1864 (1978). 10.1021/jo00404a003 CASWeb of Science®Google Scholar 145 T. Cohen, R. J. Ruffner, D. W. Shull, W. M. Daniewski, R. M. Ottenbrite, P. V. Alston, J. Org. Chem. 43, 4052 (1978). 10.1021/jo00415a015 CASWeb of Science®Google Scholar 146 K. Alder, G. Stein, Angew. Chem. 50, 510 (1937). 10.1002/ange.19370502804 CASGoogle Scholar 147 J. A. Berson, Z. Hamlet, W. A. Mueller, J. Am. Chem. Soc. 84, 297 (1962). 10.1021/ja00861a033 CASWeb of Science®Google Scholar 148 J. R. Lindsay Smith, R. O. C. Norman, M. R. Stillings, Tetrahedron 34, 1381 (1978). 10.1016/0040-4020(78)88334-3 CASGoogle Scholar 149 R. Hoffmann, R. B. Woodward, J. Am. Chem. Soc. 87, 4388 (1965). 10.1021/ja00947a033 CASWeb of Science®Google Scholar 150 W. C. Herndon, L. H. Hall, Theor. Chim. Acta 7, 4 (1967). 10.1007/BF00537362 CASWeb of Science®Google Scholar 151 M. J. S. Dewar, Tetrahedron Suppl. 8, 75 (1967). Google Scholar 152 K. N. Houk, Tetrahedron Lett. 1970, 2621. Google Scholar 153 H.-D. Martin, R. Iden, H. J. Schiwek, Tetrahedron Lett. 1978, 3337. Google Scholar 154 M. P. Cava, M. J. Mitchell, J. Am. Chem. Soc. 81, 5409 (1959). 10.1021/ja01529a039 CASWeb of Science®Google Scholar 155 H. E. Simmons, J. Am. Chem. Soc. 83, 1657 (1961). 10.1021/ja01468a026 CASWeb of Science®Google Scholar 156 L. Watts, J. D. Fitzpatrick, R. Pettit, J. Am. Chem. Soc. 88, 623 (1965). 10.1021/ja00955a054 Web of Science®Google Scholar 157 R. B. Woodward, H. Baer, J. Am. Chem. Soc. 70, 1161 (1948). 10.1021/ja01183a084 CASWeb of Science®Google Scholar 158 F. A. L. Anet, Tetrahedron Lett. 1962, 1219. Google Scholar 159 S. J. Cristol, W. K. Seifert, S. B. Soloway, J. Am. Chem. Soc. 82, 2351 (1960). 10.1021/ja01494a060 CASWeb of Science®Google Scholar 160 N. A. Belikova, V. G. Berezkin, F. A. Platé, J. Gen. Chem. USSR 32, 2896 (1962). Web of Science®Google Scholar 161 K. B. Wiberg, W. J. Bartley, J. Am. Chem. Soc. 82, 6375 (1960). 10.1021/ja01509a045 CASWeb of Science®Google Scholar 162 D. Bellus, K. von Bredow, H. Sauter, C. D. Weis, Helv. Chim. Acta 56, 3004 (1973). 10.1002/hlca.19730560839 CASWeb of Science®Google Scholar 163 D. C. F. Law, S. W. Tobey, J. Am. Chem. Soc. 90, 2376 (1968). 10.1021/ja01011a030 CASWeb of Science®Google Scholar 164 P. B. Sargent, J. Am. Chem. Soc. 91, 3061 (1969). 10.1021/ja01039a040 Web of Science®Google Scholar 165 H. Monti, M. Bertrand, Tetrahedron Lett. 1970, 2587. Google Scholar 166 H. Monti, M. Bertrand, Tetrahedron Lett. 1970, 2591. Google Scholar 167 D. W. Jones, J. Chem. Soc. Chem. Commun. 1975, 199. Google Scholar 168 D. W. Jones, G. Kneen, J. Chem. Soc. Chem. Commun. 1973, 420. Google Scholar 169 C. M. Anderson, I. W. McCay, R. N. Warrener, Tetrahedron Lett. 1970, 2735. Google Scholar 170 Y. Kobuke, T. Fueno, J. Furukawa, J. Am. Chem. Soc. 92, 6548 (1970). 10.1021/ja00725a028 Web of Science®Google Scholar 171 K. N. Houk, L. J. Luskus, J. Am. Chem. Soc. 93, 4606 (1971). 10.1021/ja00747a052 CASWeb of Science®Google Scholar 172 A. I. Konovalov, G. I. Kamasheva, M. P. Loskutow, J. Org. Chem. USSR 9, 2064 (1973). Google Scholar 173 Y. Kobuke, T. Sugimoto, J. Furukawa, T. Fueno, J. Am. Chem. Soc. 94, 3633 (1972). 10.1021/ja00765a066 CASWeb of Science®Google Scholar 174 T. Sugimoto, Y. Kobuke, J. Furukawa, T. Fueno, Tetrahedron Lett. 1976, 1587. Google Scholar 175 K. L. Williamson, Y. F. L. Hsu, R. Lacko, C. H. Youn, J. Am. Chem. Soc. 91, 6129 (1969). 10.1021/ja01050a035 CASWeb of Science®Google Scholar 176 K. L. Williamson, Y. F. L. Hsu J. Am. Chem. Soc. 92, 7385 (1970). 10.1021/ja00728a022 CASWeb of Science®Google Scholar 177 N. T. Anh Tetrahedron 29, 3227 (1973). 10.1016/S0040-4020(01)93470-2 Web of Science®Google Scholar 178 S. Seltzer, Adv. Alicyclic Chem. 2, 1 (1968). 10.1016/B978-1-4831-9918-4.50007-7 CASGoogle Scholar 179 R. Sustmann, R. Schubert, Angew. Chem. 84, 888 (1972); 10.1002/ange.19720841807 Google Scholar Angew. Chem. Int. Ed. Engl. 11, 840 (1972). 10.1002/anie.197208401 CASWeb of Science®Google Scholar 180 L. E. Overman, G. F. Taylor, K. N. Houk, L. N. Domelsmith, J. Am. Chem. Soc. 100, 3182 (1978). 10.1021/ja00478a038 CASWeb of Science®Google Scholar 181 K. N. Houk, L. L. Munchhausen, J. Am. Chem. Soc. 98, 937 (1976). 10.1021/ja00420a012 CASWeb of Science®Google Scholar 182 B. Eisler, A. Wassermann, J. Chem. Soc. 1953, 979. Google Scholar 183 C. W. Bock, P. George, M. Trachtman, M. Zanger, J. Chem. Soc. Perkin Trans. II 1979, 26. Google Scholar 184 C. A. Stewart, J. Am. Chem. Soc. 84, 117 (1962). 10.1021/ja00860a032 CASWeb of Science®Google Scholar 185 H. D. Scharf, H. Plum, J. Fleischhauer, W. Schleker, Chem. Ber. 112, 862 (1979). 10.1002/cber.19791120312 CASWeb of Science®Google Scholar 186 R. Sustmann, M. Böhm, J. Sauer, Chem. Ber. 112, 883 (1979). 10.1002/cber.19791120313 CASWeb of Science®Google Scholar 187 A. Mielert, Ch. Braig, J. Sauer, J. Martelli, R. Sustmann, Justus Liebigs Ann. Chem. 1980, 954. 10.1002/jlac.198019800615 Google Scholar 188 V. D. Kiselev, A. I. Konovalov, E. A. Veisman, A. N. Ustyugov, J. Org. Chem. USSR 14, 118 (1978). Google Scholar 189 Ya. D. Samuilov, L. F. Uryadova, B. N. Solomonov, A. I. Konovalov, J. Org. Chem. USSR 11, 1931 (1975). Google Scholar 190 B. Giese, Angew. Chem. 89, 162 (1977); 10.1002/ange.19770890307 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 16, 125 (1977). 10.1002/anie.197701253 Web of Science®Google Scholar 191 N. Shimizu, S. Nishida, J. Chem. Soc. Chem. Commun. 1978, 931. Google Scholar 192 T. Inukai, T. Kojima, J. Org. Chem. 36, 924 (1971), dort weitere Literatur. 10.1021/jo00806a014 CASWeb of Science®Google Scholar 193 Normale Diels-Alder-Additionen: A. I. Konovalov, B. N. Solomonov, J. Org. Chem. USSR 11, 2178 (1975): Isobenzofurane + substituierte Styrole; Google Scholar Ya. D. Samuilov, A. I. Konovalov, L. F. Uryadova, J. Org. Chem. USSR 10, 1945 (1974): Pentacen + substituierte Styrole; Google Scholar [189]: Anthracen oder Tetracen + substituierte N-Phenylmaleinimide. Inverse Diels-Alder-Additionen: Ya. D. Samuilov, L. F. Uryadova, A. I. Konovalov, J. Org. Chem. USSR 12, 811 (1976): Substituierte Indanocyclone + substituierte Styrole. Google Scholar 194 Y. Okamoto, H. C. Brown, J. Am. Chem. Soc. 79, 1913 (1957). 10.1021/ja01565a039 Web of Science®Google Scholar 195 R. Sustmann, Tetrahedron Lett. 1974, 963. Google Scholar 196 O. Henri-Rousseau, F. Texier, J. Chem. Educ. 55, 437 (1978). 10.1021/ed055p437 CASWeb of Science®Google Scholar 197 E. J. De Witt, C. T. Lester, G. A. Ropp, J. Am. Chem. Soc. 78, 2101 (1956). 10.1021/ja01591a020 CASWeb of Science®Google Scholar 198 G. Kresze, J. Firl, H. Zimmer, U. Wollnik, Tetrahedron 20, 1605 (1964). 10.1016/S0040-4020(01)99157-4 CASWeb of Science®Google Scholar 199 G. Kresze, O. Korpiun, Tetrahedron 22, 2493 (1966). 10.1016/S0040-4020(01)99040-4 CASWeb of Science®Google Scholar 200 I. Tabushi, H. Yamada, Z. Yoshida, R. Oda, Bull. Chem. Soc. Jpn. 50, 285 (1977). 10.1246/bcsj.50.285 CASWeb of Science®Google Scholar 201 I. Benghiat, E. I. Becker, J. Org. Chem. 23, 885 (1958). 10.1021/jo01100a031 Web of Science®Google Scholar 202 M. Ahmad, J. Hamer, J. Org. Chem. 31, 2829 (1966). 10.1021/jo01347a021 CASWeb of Science®Google Scholar 203 M. E. Burrage, R. C. Cookson, S. S. Gupte, I. D. R. Stevens, J. Chem. Soc. Perkin Trans. II 1975, 1325. Google Scholar 204 M. Mizuta, Y. Ishii, Kogyo Kagaku Zasshi 66, 1442 (1963); 10.1246/nikkashi1898.66.10_1442 CASGoogle Scholar Chem. Abstr. 60, 11880 (1964). Google Scholar 205 G. Desimoni, A. Gamba, M. Monticelli, M. Nicola, G. Tacconi, J. Am. Chem. Soc. 98, 2947 (1976). 10.1021/ja00426a045 CASWeb of Science®Google Scholar 206 H. Appler, J. Sauer, unveröffentlichte Ergebnisse; Google Scholar H. Appler, Zulassungsarbeit, Universität Regensburg 1980. Google Scholar 207 D. Stepanow, J. Sauer, unveröffentlichte Ergebnisse. Google Scholar 208 D. Lang, J. Sauer, unveröffentlichte Ergebnisse; Google Scholar D. Lang, Dissertation, Universität München 1963. Google Scholar 209 M. Yasuda, K. Harano, K. Kanematsu, J. Org. Chem. 45, 659 (1980). 10.1021/jo01292a022 CASWeb of Science®Google Scholar 210 A. I. Konovalov, B. N. Solomonov, O. Y. Chertov, J. Org. Chem. USSR 11, 113 (1975). Google Scholar 211 A. I. Konovalov, Ya. D. Samuilov, L. F. Uryadova, E. A. Berdnikov, J. Org. Chem. USSR 12, 636 (1976). Google Scholar 212 A. I. Konovalov, B. N. Solomonov, O. Yu. Chertov, J. Org. Chem. USSR 11, 103 (1975). Google Scholar 213 A. I. Konovalov, Ya. D. Samuilov, L. F. Slepova, V. A. Breus, J. Org. Chem. USSR 9, 2539 (1973). Auch die Umsetzungen von Tetracyclon mit substituierten Phenylacetylenen gehören dem Typ II an. Google Scholar 214 A. I. Konovalov, L. F. Uryadova, Ya. D. Samuilov, J. Org. Chem. USSR 12, 2519 (1976). Google Scholar 215 P. Brown, R. C. Cookson, Tetrahedron 21, 1977 (1965). 10.1016/S0040-4020(01)98337-1 CASWeb of Science®Google Scholar 216 A. I. Konovalov, J. P. Breus, I. A. Sharagin, V. D. Kiselev, J. Org. Chem. USSR 15, 315 (1979). Google Scholar 217 M. J. S. Dewar, R. S. Pyron, J. Am. Chem. Soc. 92, 3098 (1970). 10.1021/ja00713a030 CASWeb of Science®Google Scholar 218 J. Sauer, A. Mielert, unveröffentlichte Ergebnisse. Google Scholar 219 M. Ahmad, J. Hamer, J. Org. Chem. 31, 2831 (1966). 10.1021/jo01347a022 CASWeb of Science®Google Scholar 220 P. Haberfield, A. K. Ray, J. Org. Chem. 37, 3093 (1972). 10.1021/jo00985a011 CASWeb of Science®Google Scholar 221 L. J. Andrews, R. M. Keefer, J. Am. Chem. Soc. 77, 6284 (1955). 10.1021/ja01628a066 CASWeb of Science®Google Scholar 222 J. R. Lacher, G. W. Tompkin, J. D. Park, J. Am. Chem. Soc. 74, 1693 (1952); 10.1021/ja01127a024 CASWeb of Science®Google Scholar B. Atkinson, A. B. Trenwith, J. Chem. Soc. 1953, 2082; Google Scholar J. Chem. Phys. 20, 754 (1952). Google Scholar 223 C. D. Duncan, L. R. Corwin, J. H. Davis, J. A. Berson, J. Am. Chem. Soc. 102, 2350 (1980); 10.1021/ja00527a037 CASWeb of Science®Google Scholar M. S. Platz, J. A. Berson, J. Am. Chem. Soc. 102, 2358 (1980). 10.1021/ja00527a038 CASWeb of Science®Google Scholar 224 Ya. D. Samuilov, L. F. Uryadova, B. N. Solomonov, A. I. Konovalov, J. Org. Chem. USSR 11, 1931 (1975). Google Scholar 225 D. N. Matthews, E. I. Becker, J. Org. Chem. 31, 1135 (1966). 10.1021/jo01342a035 CASWeb of Science®Google Scholar 226(a) C. Walling, J. Peisach, J. Am. Chem. Soc. 80, 5819 (1958); 10.1021/ja01554a058 CASWeb of Science®Google Scholar(b) C. Walling, H. J. Schugar, J. Am. Chem. Soc. 85, 607 (1963); 10.1021/ja00888a029 CASWeb of Science®Google Scholar(c) B. Raistrick, R. H. Sapiro, D. M. Newitt, J. Chem. Soc. 1939, 1770. Google Scholar 227 S. W. Benson, J. A. Berson, J. Am. Chem. Soc. 84, 152 (1962). 10.1021/ja00861a005 Web of Science®Google Scholar 228(a) M. G. Gonikberg, L. F. Vereshagin, Zh. Fiz. Khim. 23, 1447 (1949); CASWeb of Science®Google Scholar(b) M. G. Gonikberg, Zh. Fiz. Khim. 34, 106 (1960). Google Scholar 229 J. R. McCabe, C. A. Eckert, Ind. Eng. Chem. Fundam. 13, 168 (1974). 10.1021/i160051a002 CASWeb of Science®Google Scholar 230 R. A. Grieger, C. A. Eckert, Trans. Faraday Soc. 66, 2579 (1970). 10.1039/tf9706602579 CASWeb of Science®Google Scholar 231 R. A. Grieger, C. A. Eckert, Ind. Eng. Chem. Fundam. 10, 369 (1971). 10.1021/i160039a005 Web of Science®Google Scholar 232 R. A. Grieger, C. A. Eckert, J. Am. Chem. Soc. 92, 2918, 7149 (1970). 10.1021/ja00712a054 CASWeb of Science®Google Scholar 233 C. Brun, G. Jenner, Tetrahedron 28, 3113 (1972). 10.1016/0040-4020(72)80025-5 CASWeb of Science®Google Scholar 234 B. E. Poling, C. A. Eckert, Ind. Eng. Chem. Fundam. 11, 451 (1972). 10.1021/i160044a004 CASWeb of Science®Google Scholar 235(a) C. A. Stewart, J. Am. Chem. Soc. 93, 4815 (1971); 10.1021/ja00748a025 CASWeb of Science®Google Scholar(b) J. Am. Chem. Soc. 94, 635 (1972). 10.1021/ja00757a055 CASWeb of Science®Google Scholar 236 Sehr detaillierte Studie zur Druckabhängigkeit von [2 + 2]-Cycloadditionen unter Einschluß von CT-Phänomenen: J. von Jouanne, H. Kelm, R. Huisgen, J. Am. Chem. Soc. 101, 151 (1979). 10.1021/ja00495a026 CASWeb of Science®Google Scholar 237 F. E. Rogers, J. Phys. Chem. 75, 1734 (1971); 10.1021/j100906a016 CASWeb of Science®Google Scholar J. Phys. Chem. 76, 106 (1972); 10.1021/j100645a018 CASPubMedWeb of Science®Google Scholar F. E. Rogers, S. W. Quan, J. Phys. Chem. 77, 828 (1973). 10.1021/j100625a019 CASWeb of Science®Google Scholar 238 K. J. Breslauer, D. S. Kabakoff, J. Org. Chem. 39, 721 (1974). 10.1021/jo00919a034 CASWeb of Science®Google Scholar 239 H. D. Fühlhuber, A. Miedaner, J. Sauer, R. Sustmann, unveröffentlichte Ergebnisse; Google Scholar A. Miedaner, Diplomarbeit, Universität Regensburg 1978. Google Scholar 240 V. D. Kiselev, A. I. Konovalov, E. A. Veisman, A. N. Ustyugov, J. Org. Chem. USSR 14, 118 (1978). Google Scholar 241 B. S. Khambata, A. Wassermann, J. Chem. Soc. 1939, 375. Google Scholar 242 W. C. Herndon, C. R. Grayson, J. M. Manion, J. Org. Chem. 32, 526 (1967). 10.1021/jo01278a003 CASWeb of Science®Google Scholar 243 A. Wassermann, Trans. Faraday Soc. 34, 128 (1938), dort weitere Literatur. 10.1039/tf9383400128 CASGoogle Scholar 244 M. Uchiyama, T. Tomioka, A. Amano, J. Phys. Chem. 68, 1878 (1964). 10.1021/j100789a036 CASWeb of Science®Google Scholar 245 W. Tsang, J. Chem. Phys. 42, 1805 (1965). 10.1063/1.1696193 CASWeb of Science®Google Scholar 246 D. C. Tardy, R. Ireton, A. S. Gordon, J. Am. Chem. Soc. 101, 1508 (1979): Die angegebene Spaltung der tetradeuterierten Verbindung ist die Hauptreaktion (>95%); daneben laufen auch D2-, HD- und H2-Eliminierung als Konkurrenzreaktion ab. 10.1021/ja00500a024 CASWeb of Science®Google Scholar 247 J. Sauer, B. Schröder, R. Wiemer, Chem. Ber. 100, 306 (1967). 10.1002/cber.19671000135 CASWeb of Science®Google Scholar 248 J. A. Berson, W. A. Mueller, J. Am. Chem. Soc. 83, 4940 (1961). 10.1021/ja01485a017 CASWeb of Science®Google Scholar 249 W. Grimme, H. G. Köser, Angew. Chem. 92, 307 (1980); 10.1002/ange.19800920414 CASGoogle Scholar Angew. Chem. Int. Ed. Engl. 19, 307 (1980) und frühere Arbeiten; 10.1002/anie.198003071 Web of Science®Google Scholar W. Grimme, persönliche Mitteilung. Google Scholar 250 W. Neukam, W. Grimme, Tetrahedron Lett. 1978, 2201; Google Scholar O. Papies, W. Grimme, Tetrahedron Lett. 1980, 2799. Google Scholar 251 G. Brieger, J. N. Bennett, Chem. Rev. 80, 63 (1980). 10.1021/cr60323a004 CASWeb of Science®Google Scholar Citing Literature Volume92, Issue10Oktober 1980Pages 773-801 This is the German version of Angewandte Chemie. Note for articles published since 1962: Do not cite this version alone. Take me to the International Edition version with citable page numbers, DOI, and citation export. We apologize for the inconvenience. ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX