Artigo Acesso aberto Revisado por pares

Risks Associated with Low Doses and Low Dose Rates of Ionizing Radiation: Why Linearity May Be (Almost) the Best We Can Do

2009; Radiological Society of North America; Volume: 251; Issue: 1 Linguagem: Inglês

10.1148/radiol.2511081686

ISSN

1527-1315

Autores

Mark P. Little, Richard Wakeford, E. Janet Tawn, Simon Bouffler, Amy Berrington de González,

Tópico(s)

Radioactivity and Radon Measurements

Resumo

HomeRadiologyVol. 251, No. 1 PreviousNext Reviews and CommentaryControversiesRisks Associated with Low Doses and Low Dose Rates of Ionizing Radiation: Why Linearity May Be (Almost) the Best We Can DoMark P. Little, Richard Wakeford, E. Janet Tawn, Simon D. Bouffler, Amy Berrington de GonzalezMark P. Little, Richard Wakeford, E. Janet Tawn, Simon D. Bouffler, Amy Berrington de GonzalezAuthor Affiliations1From the Department of Epidemiology and Public Health, Imperial College Faculty of Medicine, St Mary's Campus, Norfolk Place, London W2 1PG, England (M.P.L.); Dalton Nuclear Institute, University of Manchester, Manchester, England (R.W.); University of Central Lancashire, Cumbria, England (E.J.T.); Health Protection Agency, Radiation Protection Division, Centre for Radiation, Chemical and Radiation Hazards, Chilton, Didcot, England (S.D.B.); and Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Md (A.B.d.G.). Received August 7, 2008; revision requested August 9; revision received September 4; accepted September 19; final version accepted October 8. Supported in part by the European Commission under contracts FI6R-CT-2003-508842 (RISC-RAD) and FP6-036465 (NOTE).Address correspondence to M.P.L. (e-mail: [email protected]).Mark P. LittleRichard WakefordE. Janet TawnSimon D. BoufflerAmy Berrington de GonzalezPublished Online:Apr 1 2009https://doi.org/10.1148/radiol.2511081686MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1 Stevens LG. Injurious effects on the skin. Br Med J 1896;1:998. Crossref, Medline, Google Scholar2 Gilchrist TC. A case of dermatitis due to the x rays. Bull Johns Hopkins Hosp 1897;8:17–22. Google Scholar3 Frieben A. Demonstration eines Cancroids des rechten Handrückens, das sich nach langdauernder Einwirkung von Röntgenstrahlen bei einem 33 jährigen Mann entwickelt hatte. Fortschr Rontgenstr 1902;6:106. Google Scholar4 U.S. National Academy of Sciences, National Research Council, Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation. Health Risks from Exposure to Low Levels of Ionizing Radiation. BEIR VII Phase 2. Washington, DC: National Academies Press, 2006. Google Scholar5 The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann ICRP 2007;37(2–4):1–332. Google Scholar6 United Nations Scientific Committee on the Effects of Atomic Radiation. UNSCEAR 2006 Report to the General Assembly with Scientific Annexes. Effects of Ionizing Radiation. Volume I Report and Annexes A and B. New York, NY: United Nations, 2008. Google Scholar7 Tubiana M, Feinendegen LE, Yang C, Kaminski JM. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 2009;251(1):13–22. Google Scholar8 Little MP. Comparison of the risks of cancer incidence and mortality following radiation therapy for benign and malignant disease with the cancer risks observed in the Japanese A-bomb survivors. Int J Radiat Biol 2001;77:431–464. [Published correction appears in Int J Radiat Biol 2001;77:745–760.] Google Scholar9 Little MP. Cancer after exposure to radiation in the course of treatment for benign and malignant disease. Lancet Oncol 2001;2:212–220. Crossref, Medline, Google Scholar10 Pierce DA, Vaeth M. The shape of the cancer mortality dose-response curve for the A-bomb survivors. Radiat Res 1991;126:36–42. Crossref, Medline, Google Scholar11 Little MP, Muirhead CR. Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors. Int J Radiat Biol 1996;70:83–94. Crossref, Medline, Google Scholar12 Little MP, Muirhead CR. Curvature in the cancer mortality dose response in Japanese atomic bomb survivors: absence of evidence of threshold. Int J Radiat Biol 1998;74:471–480. Crossref, Medline, Google Scholar13 Preston DL, Pierce DA, Shimizu Y, et al. Effect of recent changes in atomic bomb survivor dosimetry on cancer mortality risk estimates. Radiat Res 2004;162:377–389. Crossref, Medline, Google Scholar14 Preston DL, Ron E, Tokuoka S, et al. Solid cancer incidence in atomic bomb survivors: 1958–1998. Radiat Res 2007;168:1–64. Crossref, Medline, Google Scholar15 Little MP, Charles MW. The risk of non-melanoma skin cancer incidence in the Japanese atomic bomb survivors. Int J Radiat Biol 1997;71:589–602. Crossref, Medline, Google Scholar16 Rowland RE, Stehney AF, Lucas HF Jr. Dose-response relationships for female radium dial workers. Radiat Res 1978;76:368–383. Crossref, Medline, Google Scholar17 Thomas RG. The US radium luminisers: a case for a policy of “below regulatory concern.” J Radiol Prot 1994;14:141–153. Crossref, Google Scholar18 Preston DL, Mattsson A, Holmberg E, Shore R, Hildreth NG, Boice JD Jr. Radiation effects on breast cancer risk: a pooled analysis of eight cohorts. Radiat Res 2002;158:220–235. [Published correction appears in Radiat Res 2002;158:666.] Crossref, Medline, Google Scholar19 United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiation. UNSCEAR 1993 report to the General Assembly, with scientific annexes. New York, NY: United Nations, 1993. Google Scholar20 Little MP, Hoel DG, Molitor J, Boice JD Jr, Wakeford R, Muirhead CR. New models for evaluation of radiation-induced lifetime cancer risk and its uncertainty employed in the UNSCEAR 2006 report. Radiat Res 2008;169:660–676. Crossref, Medline, Google Scholar21 Boice JD Jr, Blettner M, Kleinerman RA, et al. Radiation dose and leukemia risk in patients treated for cancer of the cervix. J Natl Cancer Inst 1987;79:1295–1311. Medline, Google Scholar22 Thomas DC, Blettner M, Day NE. Use of external rates in nested case-control studies with application to the International Radiation Study of Cervical Cancer patients. Biometrics 1992;48:781–794. Crossref, Medline, Google Scholar23 Weiss HA, Darby SC, Fearn T, Doll R. Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res 1995;142:1–11. Crossref, Medline, Google Scholar24 Little MP, Weiss HA, Boice JD Jr, Darby SC, Day NE, Muirhead CR. Risks of leukemia in Japanese atomic bomb survivors, in women treated for cervical cancer, and in patients treated for ankylosing spondylitis. Radiat Res 1999;152:280–292. [Published correction appears in Radiat Res 2000;153:243.] Crossref, Medline, Google Scholar25 Little MP, Muirhead CR. Absence of evidence for threshold departures from linear-quadratic curvature in the Japanese A-bomb cancer incidence and mortality data. Int J Low Radiat 2004;1:242–255. Crossref, Google Scholar26 Pierce DA, Preston DL. Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat Res 2000;154:178–186. Crossref, Medline, Google Scholar27 Valentin J. Low-dose extrapolation of radiation-related cancer risk. Ann ICRP 2005;35(4):1–140. Crossref, Google Scholar28 Land CE. Uncertainty, low-dose extrapolation and the threshold hypothesis. J Radiol Prot 2002;22:A129–A135. Crossref, Medline, Google Scholar29 Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J 1958;1:1495–1508. Crossref, Medline, Google Scholar30 Monson RR, MacMahon B. Prenatal x-ray exposure and cancer in children. In: Boice JD Jr, Fraumeni JF Jr, eds. Radiation carcinogenesis: epidemiology and biological significance. New York, NY: Raven, 1984;97–105. Google Scholar31 Harvey EB, Boice JD Jr, Honeyman M, Flannery JT. Prenatal x-ray exposure and childhood cancer in twins. N Engl J Med 1985;312:541–545. Crossref, Medline, Google Scholar32 Boice JD Jr, Miller RW. Childhood and adult cancer after intrauterine exposure to ionizing radiation. Teratology 1999;59:227–233. Crossref, Medline, Google Scholar33 Streffer C, Shore R, Konermann G, et al. Biological effects after prenatal irradiation (embryo and fetus). A report of the International Commission on Radiological Protection. Ann ICRP 2003;33(1–2):5–206. Google Scholar34 Doll R, Wakeford R. Risk of childhood cancer from fetal irradiation. Br J Radiol 1997;70:130–139. Crossref, Medline, Google Scholar35 Wakeford R, Little MP. Risk coefficients for childhood cancer after intrauterine irradiation: a review. Int J Radiat Biol 2003;79:293–309. Crossref, Medline, Google Scholar36 Boice JD Jr, Preston D, Davis FG, Monson RR. Frequent chest X-ray fluoroscopy and breast cancer incidence among tuberculosis patients in Massachusetts. Radiat Res 1991;125:214–222. Crossref, Medline, Google Scholar37 Howe GR, McLaughlin J. Breast cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with breast cancer mortality in the atomic bomb survivors study. Radiat Res 1996;145:694–707. Crossref, Medline, Google Scholar38 Little MP, Boice JD Jr. Comparison of breast cancer incidence in the Massachusetts tuberculosis fluoroscopy cohort and in the Japanese atomic bomb survivors. Radiat Res 1999;151:218–224. Crossref, Medline, Google Scholar39 National Council on Radiation Protection and Measurements. Influence of dose and its distribution in time on dose-response relationships for low-LET radiations. NCRP Report No. 64. Bethesda, Md: National Council on Radiation Protection and Measurements, 1980. Google Scholar40 Davis FG, Boice JD Jr, Hrubec Z, Monson RR. Cancer mortality in a radiation-exposed cohort of Massachusetts tuberculosis patients. Cancer Res 1989;49:6130–6136. Medline, Google Scholar41 Howe GR. Lung cancer mortality between 1950 and 1987 after exposure to fractionated moderate-dose-rate ionizing radiation in the Canadian fluoroscopy cohort study and a comparison with lung cancer mortality in the atomic bomb survivors study. Radiat Res 1995;142:295–304. Crossref, Medline, Google Scholar42 Ronckers CM, Doody MM, Lonstein JE, Stovall M, Land CE. Multiple diagnostic X-rays for spine deformities and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 2008;17:605–613. Crossref, Medline, Google Scholar43 Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res 1995;141:259–277. Crossref, Medline, Google Scholar44 Shore RE, Moseson M, Harley N, Pasternack BS. Tumors and other diseases following childhood x-ray treatment for ringworm of the scalp (tinea capitis). Health Phys 2003;85:404–408. Crossref, Medline, Google Scholar45 Lindberg S, Karlsson P, Arvidsson B, Holmberg E, Lundberg LM, Wallgren A. Cancer incidence after radiotherapy for skin haemangioma during infancy. Acta Oncol 1995;34:735–740. Crossref, Medline, Google Scholar46 Lundell M, Hakulinen T, Holm LE. Thyroid cancer after radiotherapy for skin hemangioma in infancy. Radiat Res 1994;140:334–339. Crossref, Medline, Google Scholar47 Muirhead CR, Goodill AA, Haylock RG, et al. Occupational radiation exposure and mortality: second analysis of the National Registry for Radiation Workers. J Radiol Prot 1999;19:3–26. Crossref, Medline, Google Scholar48 U.S. National Academy of Sciences, National Research Council, Committee on Health Risks of Exposure to Radon (BEIR VI). Health effects of exposure to radon. Washington, DC: National Academy Press, 1999. Google Scholar49 Cardis E, Vrijheid M, Blettner M, et al. Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ 2005;331:77–80. Crossref, Medline, Google Scholar50 Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann ICRP 1994;24(1–3):1–482. Crossref, Google Scholar51 Little MP. Comparisons of lung tumour mortality risk in the Japanese A-bomb survivors and in the Colorado Plateau uranium miners: support for the ICRP lung model. Int J Radiat Biol 2002;78:145–163. Crossref, Medline, Google Scholar52 Land CE. Estimating cancer risks from low doses of ionizing radiation. Science 1980;209:1197–1203. Crossref, Medline, Google Scholar53 Bonassi S, Ugolini D, Kirsch-Volders M, Stromberg U, Vermeulen R, Tucker JD. Human population studies with cytogenetic biomarkers: review of the literature and future prospectives. Environ Mol Mutagen 2005;45:258–270. Crossref, Medline, Google Scholar54 Norppa H, Bonassi S, Hansteen IL, et al. Chromosomal aberrations and SCEs as biomarkers of cancer risk. Mutat Res 2006;600:37–45. Crossref, Medline, Google Scholar55 Boffetta P, van der Hel O, Norppa H, et al. Chromosomal aberrations and cancer risk: results of a cohort study from Central Europe. Am J Epidemiol 2007;165:36–43. Medline, Google Scholar56 Tawn EJ, Whitehouse CA, Tarone RE. FISH chromosome aberration analysis on retired radiation workers from the Sellafield nuclear facility. Radiat Res 2004;162:249–256. Crossref, Medline, Google Scholar57 International Atomic Energy Agency. Cytogenetic analysis for radiation dose assessment: a manual. IAEA Technical Report Series No. 405. Vienna, Austria: International Atomic Energy Agency, 2001. Google Scholar58 Bhatti P, Doody MM, Preston DL, et al. Increased frequency of chromosome translocations associated with diagnostic X-ray examinations. Radiat Res 2008;170:149–155. Crossref, Medline, Google Scholar59 Edwards AA, Lloyd DC. Risks from ionising radiation: deterministic effects. J Radiol Prot 1998;18:175–183. Crossref, Medline, Google Scholar60 Harris H. A long view of fashions in cancer research. Bioessays 2005;27:833–838. Crossref, Medline, Google Scholar61 Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation. I. Radiation-induced genomic instability and bystander effects in vitro. Radiat Res 2003;159:567–580. Google Scholar62 Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiation. II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 2003;159:581–596. Google Scholar63 National Council on Radiation Protection and Measurements. Evaluation of the linear-nonthreshold dose-response model for ionizing radiation. NCRP Report No. 136. Bethesda, Md: National Council on Radiation Protection and Measurements, 2001. Google Scholar64 Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc Natl Acad Sci U S A 2003;100:13761–13766. Crossref, Medline, Google Scholar65 Joiner MC, Marples B, Lambin P, Short SC, Turesson I. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys 2001;49:379–389. Crossref, Medline, Google Scholar66 Joiner MC, Johns H. Renal damage in the mouse: the response to very small doses per fraction. Radiat Res 1988;114:385–398. Crossref, Medline, Google Scholar67 United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and effects of ionizing radiation. UNSCEAR 1994 report to the General Assembly, with scientific annexes. New York, NY: United Nations, 1994. Google Scholar68 Brenner DJ, Little JB, Sachs RK. The bystander effect in radiation oncogenesis. II. A quantitative model. Radiat Res 2001;155:402–408. Google Scholar69 Mothersill C, Smith RW, Agnihotri N, Seymour CB. Characterisation of a radiation-induced stress response communicated in vivo between zebrafish. Environ Sci Technol 2007;41:3382–3387. Crossref, Medline, Google Scholar70 Mancuso M, Pasquali E, Leonardi S, et al. Oncogenic bystander radiation effects in Patched heterozygous mouse cerebellum. Proc Natl Acad Sci U S A 2008;105:12445–12450. Crossref, Medline, Google Scholar71 Little MP, Wakeford R. The bystander effect in C3H 10T cells and radon-induced lung cancer. Radiat Res 2001;156:695–699. Crossref, Medline, Google Scholar72 Nakanishi M, Tanaka K, Shintani T, Takahashi T, Kamada N. Chromosomal instability in acute myelocytic leukemia and myelodysplastic syndrome patients among atomic bomb survivors. J Radiat Res 1999;40:159–167. Crossref, Medline, Google Scholar73 Nakanishi M, Tanaka K, Takahashi T, et al. Microsatellite instability in acute myelocytic leukaemia developed from A-bomb survivors. Int J Radiat Biol 2001;77:687–694. Crossref, Medline, Google Scholar74 Little MP. Comments on the paper: Microsatellite instability in acute myelocytic leukaemia developed from A-bomb survivors [letter]. Int J Radiat Biol 2002;78:441–443. Crossref, Medline, Google Scholar75 Cox R, Edwards AA. Comments on the paper: Microsatellite instability in acute myelocytic leukaemia developed from A-bomb survivors—and related cytogenetic data [letter]. Int J Radiat Biol 2002;78:443–445. Medline, Google Scholar76 Littlefield LG, Travis LB, Sayer AM, Voelz GL, Jensen RH, Boice JD Jr. Cumulative genetic damage in hematopoietic stem cells in a patient with a 40-year exposure to alpha particles emitted by thorium dioxide. Radiat Res 1997;148:135–144. Crossref, Medline, Google Scholar77 Salomaa S, Holmberg K, Lindholm C, et al. Chromosomal instability in in vivo radiation exposed subjects. Int J Radiat Biol 1998;74:771–779. Crossref, Medline, Google Scholar78 Tawn EJ, Whitehouse CA, Martin FA. Sequential chromosome aberration analysis following radiotherapy: no evidence for enhanced genomic instability. Mutat Res 2000;465:45–51. Crossref, Medline, Google Scholar79 Whitehouse CA, Tawn EJ. No evidence for chromosomal instability in radiation workers with in vivo exposure to plutonium. Radiat Res 2001;156:467–475. Crossref, Medline, Google Scholar80 Kryscio A, Ulrich Müller WU, Wojcik A, Kotschy N, Grobelny S, Streffer C. A cytogenetic analysis of the long-term effect of uranium mining on peripheral lymphocytes using the micronucleus-centromere assay. Int J Radiat Biol 2001;77:1087–1093. Crossref, Medline, Google Scholar81 Amundson SA, Lee RA, Koch-Paiz CA, et al. Differential responses of stress genes to low dose-rate gamma irradiation. Mol Cancer Res 2003;1:445–452. Medline, Google Scholar82 Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ. Gene expression changes in mouse brain after exposure to low dose ionizing radiation. Int J Radiat Biol 2003;79:759–775. Crossref, Medline, Google Scholar83 Amundson SA. Functional genomics in radiation biology: a gateway to cellular systems level studies. Radiat Environ Biophys 2008;47:25–31. Crossref, Medline, Google ScholarArticle HistoryPublished in print: 2009 FiguresReferencesRelatedDetailsCited ByComputed TomographyAbelZhou2023Utilidad de la línea orbitomeatal superior sin incluir los cristalinos en la exploración con diferentes voltajes del tubo en la TC craneal pediátricaT.Masuda, Y.Funama, T.Nakaura, T.Sato, M.Kiguchi, T.Oku, K.Awai2023 | RadiologíaNon-linear dose response of DNA double strand breaks in response to chronic low dose radiation in individuals from high level natural radiation areas of Kerala coastVinayJain, DivyalakshmiSaini, D. C.Soren, V. AnilKumar, P. R.Vivek Kumar, P. K. M.Koya, G.Jaikrishan, BirajalaxmiDas2023 | Genes and Environment, Vol. 45, No. 1Usefulness of the superior orbitomeatal line without the lens included in the scan range at different tube voltage during pediatric head CTT.Masuda, Y.Funama, T.Nakaura, T.Sato, M.Kiguchi, T.Oku, K.Awai2023 | Radiología (English Edition)The Safe Use of 125I-Seeds as a Localization Technique in Breast Cancer during PregnancyEvaHeeling, Jeroen B.van de Kamer, MichelleMethorst, AnnemarieBruining, Mettevan de Meent, Marie-Jeanne T. F. D.Vrancken Peeters, Christianne A. R.Lok, Iris M. C.van der Ploeg2023 | Cancers, Vol. 15, No. 12MRI-based cephalometrics: a scoping review of current insights and future perspectivesKarthikSennimalai, MadhanrajSelvaraj, Om PrakashKharbanda, DevasenathipathyKandasamy, KajaMohaideen2023 | Dentomaxillofacial Radiology, Vol. 52, No. 5Real Decreto 601/2019 sobre justificación y optimización: aspectos prácticosM.M.Pérez-Peña del Llano, F.Matute Teresa, Á.Morales Santos2023 | Radiología, Vol. 65, No. 4The scientific basis for the use of the linear no-threshold (LNT) model at low doses and dose rates in radiological protectionDominiqueLaurier, YannBillarand, DmitryKlokov, KlerviLeuraud2023 | Journal of Radiological Protection, Vol. 43, No. 2Fiber Optic RealShape imaging using upper extremity and transfemoral access for fenestrated-branched endovascular aortic aneurysm repairFelipe L.Pavarino, JesusPorras-Colon, MarilisaSoto-Gonzalez, AlejandroPizano, Mirza S.Baig, Carlos H.Timaran2023 | Journal of Vascular Surgery Cases, Innovations and Techniques, Vol. 9, No. 2Occupational Physical Hazards and Safety Practices at Dental ClinicsAbdulazizAlamri, Mahmoud FathyElSharkawy, DalalAlafandi2023 | European Journal of Dentistry, Vol. 17, No. 02Safety Considerations in MRI and CTRobert E.Watson, LifengYu2023 | CONTINUUM: Lifelong Learning in Neurology, Vol. 29, No. 1Usefulness of electrocardiogram mA modulation during the electrocardiogram-gated CT scan in paediatrics with high heart rate for different helical pitch: a phantom-based assessment studyTakanoriMasuda, YoshinoriFunama, TakeshiNakaura, TomoyasuSato, TakayukiOku, RumiGotanda, KeikoArao, HiromasaImaizumi, ShinichiArao, AtsushiOno, JunichiHiratsuka, KazuoAwai2023 | Radiation Protection Dosimetry, Vol. 199, No. 12Royal Decree 601/2019 on justification and optimization: Practical aspectsM.M.Pérez-Peña del Llano, F.Matute Teresa, Á.Morales Santos2023 | Radiología (English Edition), Vol. 65, No. 4Nuclear Medicine and Molecular ImagingHediehKhalatbari, Barry L.Shulkin, LisaAldape, Marguerite T.Parisi2022Review of the risk of cancer following low and moderate doses of sparsely ionising radiation received in early life in groups with individually estimated dosesMark P.Little, RichardWakeford, Simon D.Bouffler, KossiAbalo, MichaelHauptmann, NobuyukiHamada, Gerald M.Kendall2022 | Environment International, Vol. 159Radiation dose reduction method combining the ECG-Edit function and high helical pitch in retrospectively-gated CT angiographyT.Masuda, Y.Funama, T.Nakaura, T.Sato, T.Okimoto, R.Gotanda, K.Arao, H.Imaizumi, S.Arao, A.Ono, J.Hiratsuka, K.Awai2022 | Radiography, Vol. 28, No. 3The Evidence for Excess Risk of Cancer and Non-Cancer Disease at Low Doses and Dose RatesS.L.Simon, G.M.Kendall, S.D.Bouffler, M.P.Little2022 | Radiation Research, Vol. 198, No. 6Digital MammographyRaed Mohammed KadhimM. Ali2022Should I irradiate with computed tomography or sedate for magnetic resonance imaging?Michael J.Callahan, Joseph P.Cravero2022 | Pediatric Radiology, Vol. 52, No. 2Assessing and conveying risks and benefits of imaging in neonates using ionizing radiation and sedation/anesthesiaGary R.Schooler, Joseph P.Cravero, Michael J.Callahan2022 | Pediatric Radiology, Vol. 52, No. 4Unboxing the molecular modalities of mutagens in cancerSmitaKumari, SudhanshuSharma, DiaAdvani, AkankshaKhosla, PravirKumar, Rashmi K.Ambasta2022 | Environmental Science and Pollution Research, Vol. 29, No. 41Cumulative Radiation Exposure in Aneurysmal Subarachnoid Hemorrhage: A Single-Institution AnalysisJulieNecarsulmer, SamuelReed, MartinArhin, DarshanShastri, NathanQuig, EdwardYap, JamesHo, DeannaSasaki-Adams2022 | World Neurosurgery, Vol. 165Free breathing VMAT versus deep inspiration breath‐hold 3D conformal radiation therapy for early stage left‐sided breast cancerChrister AJensen, MaritFunderud, ChristofferLervåg2021 | Journal of Applied Clinical Medical Physics, Vol. 22, No. 4Clinical concordance with Image Gently guidelines for pediatric computed tomography: a study across 663,417 CT scans at 53 clinical facilitiesTaylor BruntonSmith, JohnHeil, Donald P.Frush, EhsanSamei2021 | Pediatric Radiology, Vol. 51, No. 5Factors influencing cumulative radiation dose from percutaneous intra-abdominal abscess drainage in the setting of inflammatory bowel diseaseThomas J.An, AzadehTabari, Michael S.Gee, Colin J.McCarthy2021 | Abdominal Radiology, Vol. 46, No. 5Radiation dose from medical imaging in end stage renal disease patients: a Nationwide Italian SurveyMaurizioPostorino, DomenicoLizio, AndreanaDe Mauri, CarmelaMarino, Giovanni LuigiTripepi, CarmineZoccali, MarcoBrambilla, EmilioBalestra, DiegoBellino, RobertaBenevento, CristinaBregant, PaolaBregant, BarbaraCannillo, GiuseppeCasto, DorianaChiarinotti, SaraCimolai, GiacomoColussi, AntonioDe Agostini, FaustoDeclich, Maria GraziaFacchini, Maria AlessandraGalione, CesareGavotti, UgoGerini, PaolaIsoardi, CristinaIzzo, FabrizioLevrero, EricLorenzon, StefanoMaffei, StefaniaMaggi, AlbertoMari, FedericoMattana, AlbertoMenegotto, OpheliaMeniconi, NicolettaParuccini, LuisaPierotti, FedericoPieruzzi, GiuseppePontoriero, AdelePostorino, MarcoQuaglia, OsvaldoRampado, AndreaRanghino, SoniaReccanello, StefaniaSabatino, GiuliaSangalli, ChiaraSottocornola, MarinaSutto, SalvatoreTata, AlbertoTorresin, AntonioTraino, AnnalisaTrianni, LetiziaZeni2021 | Journal of Nephrology, Vol. 34, No. 3External background ionizing radiation and childhood cancer: Update of a nationwide cohort analysisAntonellaMazzei-Abba, Christophe L.Folly, ChristianKreis, Roland A.Ammann, CécileAdam, EvaBrack, MatthiasEgger, Claudia E.Kuehni, Ben D.Spycher2021 | Journal of Environmental Radioactivity, Vol. 238-239Strain difference in transgene-induced tumorigenesis and suppressive effect of ionizing radiationBibekDutta, TaichiAsami, TohruImatomi, KentoIgarashi, KentoNagata, TomomiWatanabe-Asaka, TakakoYasuda, ShojiOda, ManfredShartl, HiroshiMitani2021 | Journal of Radiation Research, Vol. 62, No. 1Use of Multiphase CT Protocols in 18 Countries: Appropriateness and Radiation DosesShivamRastogi, RamandeepSingh, RiddhiBorse, PetraValkovic Zujic, DorisSegota, AnaDiklic, SlavenJurkovic, AntarAli, HassanMohammed Kharita, Huda M.Al-Naemi, JokhaAlkalbani, AmaalAl-Rasbi, VesnaGershan, StipeGalic, MohammadYusuf, SimonaAvramova-Cholakova, Ili Majidah Binti HjZulkipli, NilarShein, SeifeTeferi, Madan M.Rehani, JeniaVassileva, Mannudeep K.Kalra2021 | Canadian Association of Radiologists Journal, Vol. 72, No. 3SOLLID – a single centre study to develop methods to investigate the effects of low radiation doses within nuclear medicine, to enable multicentre epidemiological investigationsGlennFlux, IainMurray, DominicRushforth, PaulGape, CarlaAbreu, MartinLee, AnaRibeiro, RebeccaGregory, SarahChittenden, JimThurston, YongDu, JonathanGear2021 | The British Journal of Radiology, Vol. 94, No. 1119Radiobiological risks following dentomaxillofacial imaging: should we be concerned?NielsBelmans, Anne CarolineOenning, BenjaminSalmon, BjornBaselet, KevinTabury, StéphaneLucas, IvoLambrichts, MarjanMoreels, ReinhildeJacobs, SarahBaatout2021 | Dentomaxillofacial Radiology, Vol. 50, No. 6Investigating Low-Dose Image Quality in Whole-Body Pediatric 18F-FDG Scans Using Time-of-Flight PET/MRIJeffrey P.Schmall, SulemanSurti, Hansel J.Otero, SabahServaes, Joel S.Karp, Lisa J.States2021 | Journal of Nuclear Medicine, Vol. 62, No. 1Current Situation of Proton Therapy for Hodgkin Lymphoma: From Expectations to EvidencePierreLoap, AlfredoMirandola, LudovicDe Marzi, RemiDendale, AlbertoIannalfi, VivianaVitolo, AmeliaBarcellini, Andrea RiccardoFilippi, Barbara AlicjaJereczek-Fossa, YouliaKirova, EsterOrlandi2021 | Cancers, Vol. 13, No. 15KNOWLEDGE ABOUT RISK AND PROTECTIVE MEASURES RELATED TO DIAGNOSTIC RADIATION AMONG MEDICAL STAFF IN TEACHING HOSPITALS (WASIT PROVINCE)Huda AshurShati Qutbi, Taqi MohammedJwad Taher, SaharAhmed Mahdi2021 | Wiadomości Lekarskie, Vol. 74, No. 9Fiber Optic RealShape technology in endovascular surgeryEric J.Finnesgard, Jessica P.Simons, HazelMarecki, IsaacOfori, TiloKölbel, Geert Willem H.Schurink, Joost A.van Herwaarden, AndresSchanzer2021 | Seminars in Vascular Surgery, Vol. 34, No. 4The determination of the optimal strip‐thickness of anti‐scatter grids for a given grid ratio and strip heightAbelZhou, YumingYin, QiTan, GraemeWhite, RobDavidson2020 | International Journal of Imaging Systems and Technology, Vol. 30, No. 4CBCT-Based Image Guidance for Percutaneous Access: Electromagnetic Navigation Versus 3D Image Fusion with Fluoroscopy Versus Combination of Both Technologies—A Phantom StudyVaniaTacher, MaximeBlain, EdouardHérin, ManuelVitellius, MélanieChiaradia, NadiaOubaya, HaythamDerbel, HichamKobeiter2020 | CardioVascular and Interventional Radiology, Vol. 43, No. 3The IRI-DICE hypothesis: ionizing radiation-induced DSBs may have a functional role for non-deterministic responses at low dosesBrittaLangen, KhalilHelou, EvaForssell-Aronsson2020 | Radiation and Environmental Biophysics, Vol. 59, No. 3Meta-analysis of published excess relative risk estimatesDavid B.Richardson, KossiAbalo, Marie-OdileBernier, EstelleRage, KlerviLeuraud, DominiqueLaurier, Alexander P.Keil, Mark P.Little2020 | Radiation and Environmental Biophysics, Vol. 59, No. 4Outcomes of different radioprotective precautions in children undergoing dental radiography: a systematic reviewJ. W. G.Van Acker, N. S.Pauwels, R. G. E. C.Cauwels, S.Rajasekharan2020 | European Archives of Paediatric Dentistry, Vol. 21, No. 4Artificial intelligence in image reconstruction: The change is hereRamandeepSingh, WeiwenWu, GeWang, Mannudeep K.Kalra2020 | Physica Medica, Vol. 79Knowledge of radiation protection among radiology professionals and students: A medical college-based studySurendraMaharjan, KalpanaParajuli, SurajSah, UpakarPoudel2020 | European Journal of Radiology Open, Vol. 7Eliminating the stigma: A systematic review of the health effects of low-dose radiation within the diagnostic imaging department and its implications for the future of medical radiationShaina-Lynn A.Mack2020 | Journal of Medical Imaging and Radiation Sciences, Vol. 51, No. 4Is there any supportive evidence for low dose radiotherapy for COVID-19 pneumonia?SiskoSalomaa, Si

Referência(s)