Alkaline reactivity of arsenical natrojarosite
2011; Brazilian Chemical Society; Linguagem: Inglês
10.1590/s0103-50532011001200004
ISSN1678-4790
AutoresIván A. Reyes, Francisco Patiño, Isauro Rivera, Mizraím U. Flores, Martín Reyes, Juan Hernández-Ávila,
Tópico(s)Metal Extraction and Bioleaching
ResumoJarosites are compounds that can undergo substitutions with several elements of environmental importance (such as As5+) during precipitation. Arsenic integrated in the structure could influence the solubility of the jarosite, potentially stabilizing the structure under a wide range of conditions that are tolerated by pure jarosite. Alkaline reactivity is characterized by the removal of sulfate and sodium ions from the lattice and by the formation of a gel consisting of iron hydroxides with adsorbed arsenate. The decomposition curves show an induction period, followed by a conversion period. The induction period is independent from the particle size and decreases exponentially as the temperature increases. The conversion period is characterized by the formation of a hydroxide halo around an unreacted arsenical natrojarosite core. The kinetic data are consistent with the chemical control of the process. The expression obtained in NaOH medium for [OH-] concentrations ranging from 3.84 × 10-3 to 1.08 × 10-1 mol L-1 is the following: r0/-v[1 - (1 - x)1/3] = 3.11 × 10(9) exp(-57.110/RT) [OH-]0.7 t. The expression in Ca(OH)2 medium for [OH-] concentrations ranging from 2.21 × 10-2 to 6.98 × 10-2 mol L-1 is the following: r0/-v[1 - (1 - x)1/3] = 9.22 × 10(11) exp(-48.610/RT) [OH-]1.51 t.
Referência(s)