Chameleon States: High-Valent Metal-Oxo Species of Cytochrome P450 and Its Ruthenium Analogue
2001; Wiley; Volume: 40; Issue: 15 Linguagem: Inglês
10.1002/1521-3773(20010803)40
ISSN1521-3773
AutoresFrançois Ogliaro, Sam P. de Visser, John T. Groves, Sason Shaik,
Tópico(s)Radioactive element chemistry and processing
ResumoAngewandte Chemie International EditionVolume 40, Issue 15 p. 2874-2878 Communication Chameleon States: High-Valent Metal–Oxo Species of Cytochrome P450 and Its Ruthenium Analogue François Ogliaro Dr., François Ogliaro Dr. Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry The Hebrew University of Jerusalem 91904 Jerusalem (Israel) Fax: (+972) 2-658-4680Search for more papers by this authorSamüel P. de Visser Dr., Samüel P. de Visser Dr. Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry The Hebrew University of Jerusalem 91904 Jerusalem (Israel) Fax: (+972) 2-658-4680Search for more papers by this authorJohn T. Groves Prof., John T. Groves Prof. [email protected] Department of Chemistry, Princeton University Princeton, NJ 08544-1009 (USA) Fax: (+1) 60-9-258-0348Search for more papers by this authorSason Shaik Prof., Sason Shaik Prof. [email protected] Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry The Hebrew University of Jerusalem 91904 Jerusalem (Israel) Fax: (+972) 2-658-4680Search for more papers by this author François Ogliaro Dr., François Ogliaro Dr. Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry The Hebrew University of Jerusalem 91904 Jerusalem (Israel) Fax: (+972) 2-658-4680Search for more papers by this authorSamüel P. de Visser Dr., Samüel P. de Visser Dr. Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry The Hebrew University of Jerusalem 91904 Jerusalem (Israel) Fax: (+972) 2-658-4680Search for more papers by this authorJohn T. Groves Prof., John T. Groves Prof. [email protected] Department of Chemistry, Princeton University Princeton, NJ 08544-1009 (USA) Fax: (+1) 60-9-258-0348Search for more papers by this authorSason Shaik Prof., Sason Shaik Prof. [email protected] Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry The Hebrew University of Jerusalem 91904 Jerusalem (Israel) Fax: (+972) 2-658-4680Search for more papers by this author First published: 02 August 2001 https://doi.org/10.1002/1521-3773(20010803)40:15 3.0.CO;2-9Citations: 103 The research in HU was sponsored by the Binational German Israeli Foundation (GIF) and by the Israeli Ministry of Science, Culture and Sport. Partial support by the US National Science Foundation (CHE-9814301) to J.T.G. is acknowledged. F.O. thanks the EU for a Marie Curie Fellowship. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Chameleon states: the ruthenium and iron metalloporphyrin analogues of compound I of cytochrome P450 (1; L = thiolate) possess low-lying states that change their electronic structure with solvent polarization. The ground state of the ruthenium complex is a low-spin electrophilic state, whereas the ground state of the iron complex is triradicaloid. References 1 Biomimetic Oxidations Catalyzed by Transition Metal Complexes ( ), Imperial College Press, London, 1999. 2 2a B. Meunier, J. Bernadou, Struct. Bonding 2000, 97, 1; 2b Y. Watanabe in The Porphyrin Handbook, Vol. 4 ( ), Academic Press, San Diego, 2000, pp. 97–117; 2c J. T. Groves, K. Shalyaev, J. Lee in The Porphyrin Handbook, Vol. 4 ( ), Academic Press, San Diego, 2000, pp. 17–40. 3 F. Ogliaro, S. Cohen, M. Filatov, N. Harris, S. Shaik, Angew. Chem. 2000, 112, 4009; Angew. Chem. Int. Ed. 2000, 39, 3851. 4 R. Weiss, D. Mandon, T. Wolter, A. X. Trautwein, M. Muther, B. Eckhard, E. Bill, A. Gold, K. Jayaray, J. Terner, J. Biol. Inorg. Chem. 1996, 1, 377. 5 I. Schlichting, J. Berendzen, K. Chu, A. M. Stock, S. A. Maves, D. A. Benson, R. M. Sweet, D. Ringe, G. A. Petsko, S. G. Sligar, Science 2000, 287, 1615. 6 6a D. L. Harris, G. H. Loew, Chem. Rev. 2000, 100, 407; 6b for a sulfur radical description, see: M. T. Green, J. Am. Chem. Soc. 1999, 121, 7939; J. Antony, M. Grodzicki, A. X. Trautwein, J. Phys. Chem. A 1997, 101, 2692. 7 Z. Gross, S. Ini, Inorg. Chem. 1999, 38, 1446. 8 J. T. Groves, J. S. Roman, J. Am. Chem. Soc. 1995, 117, 5594. 9 J. T. Groves, R. Quinn, J. Am. Chem. Soc. 1985, 107, 5790. 10 J. T. Groves, M. Bonchio, T. Carafiglio, K. Shalyaev, J. Am. Chem. Soc. 1996, 118, 8961. 11 11a N. L. P. Fackler, S. Zhang, T. V. O'Halloran, J. Am. Chem. Soc. 1996, 118, 481; 11b C.-M. Che, K.-Y. Wong, T. C. W. Mak, J. Chem. Soc. Chem. Commun. 1985, 988; 11c A. C. Dengel, W. P. Griffin, C. A. O'Mahoney, D. J. Williams, J. Chem. Soc. Chem. Commun. 1989, 1720; 11d C.-M. Che, K.-Y. Wong, T. C. W. Mak, J. Am. Chem. Soc. 1990, 112, 2284; 11e C.-M. Che, K.-Y. Wong, T. C. W. Mak, Inorg. Chem. 1987, 26, 2289; 11f A. C. Dengel, W. P. Griffith, Inorg. Chem. 1991, 30, 869. 12 D. H. R. Barton, D. Doller, Acc. Chem. Res. 1992, 25, 504. 13 T. Murakami, K. Yamaguchi, Y. Watanabe, I. Morishima, Bull. Chem. Soc. Jpn. 1998, 71, 1343. 14 JAGUAR 4.0, Schrödinger, Inc., Portland OR, 1998. All isolated molecule calculations were double checked for consistency using GAUSSIAN 98 (Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Lui, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998). All solvent calculations were carried out by using chlorobenzene as the polarizing medium. JAGUAR uses a polarized continuum solvent model with good performance. See: B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, B. Honig, J. Phys. Chem. 1996, 100, 11 775; J. Crystal, R. A. Friesner, J. Phys. Chem. A 2000, 104, 2362. 15 P. J. Stevens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11 623. 16 LACVP is derived from LAN2DZ: J. P. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299. 17 F. Ogliaro, S. Cohen, S. P. de Visser, S. Shaik, J. Am. Chem. Soc. 2000, 122, 12 892. 18 The same results were obtained for L=CysS− as a ligand,[3] where the spin density on the ligand in the isolated molecule is 0.67 with LACVP/6-31G. Note that for all the thiolate ligands, the "a2u" natural orbital reveals a second-order mixing with the in-plane π orbital due to the tilting of the ligand off the nodal plane of the π orbital. 19 The a1u–pπ mixing is evident from the natural orbitals of the ΠS states. Available from the authors. 20 20a J. H. Dawson, M. Sono, Chem. Rev. 1987, 87, 1255; 20b P. M. Champion, J. Am. Chem. Soc. 1989, 111, 3433; 20c J. Bernadou, A.-S. Fabiano, A. Robert, B. Meunier, J. Am. Chem. Soc. 1994, 116, 9375; 20d W.-D. Woggon, Top. Curr. Chem. 1996, 184, 40. 21 G. Ohanessian, W. A. Goddard III, Acc. Chem. Res. 1990, 23, 386. 22 22a J. T. Groves, preliminary data presented at the ICPP-1 symposium, Dijon, July 2000; 22b the electronic features of the catalytic hydroxylations that pass through the putative [(L)PorRuVO] species have been probed through studies of the relative reactivity of para-substituted toluenes. A typical Hammett treatment of data for the Ru(TPFPP)/2,6-dichloropyridine N-oxide system[10] produced a highly negative ρ+=−2.0 at 40 °C indicating an unusually large charge separation in the transition state of hydroxylation. The absolute value of this correlation coefficient is much greater than that for the relative rates of the competitive oxidation of toluenes by electrophilic oxoFeIV porphyrin radical cation, [FeIV(TPP+.)(O)], the active oxidant in the FeIII (TPP)Cl/PhIO system (ρ+=−0.83) (P. Inchley, Lindsey Smith, R. J. Lower, New J. Chem. 1989, 13, 669). For comparison, a typical radical reaction like the H. abstraction from XC6H4CH3 by tert-butoxy radicals, ρ+=−0.4 has been reported and a ρ+=−1.4 was measured for bromination with Br. radicals ( G. A. Russel, Free Radicals, Wiley-Interscience, New York, 1973). Citing Literature Volume40, Issue15August 3, 2001Pages 2874-2878 ReferencesRelatedInformation
Referência(s)