Artigo Revisado por pares

Cycloisomerization of 1,6‐Dienes Mediated by Lewis Super Acids without Additives: Easy Access to Polysubstituted Six‐Membered Carbocycles

2006; Wiley; Volume: 45; Issue: 43 Linguagem: Inglês

10.1002/anie.200602020

ISSN

1521-3773

Autores

Fanny Grau, Andreas Heumann, Élisabet Duñach,

Tópico(s)

Cyclopropane Reaction Mechanisms

Resumo

Angewandte Chemie International EditionVolume 45, Issue 43 p. 7285-7289 Communication Cycloisomerization of 1,6-Dienes Mediated by Lewis Super Acids without Additives: Easy Access to Polysubstituted Six-Membered Carbocycles Fanny Grau, Fanny Grau Laboratoire de Chimie des Molécules Bioactives et des Arômes, Université de Nice-Sophia Antipolis, CNRS, UMR 6001, Parc Valrose, 06108 Nice Cedex 2, France, Fax: (+33) 492-076-151Search for more papers by this authorAndreas Heumann Dr., Andreas Heumann Dr. [email protected] Université Paul Cézanne, UMR CNRS 6180 “Chirotechnologies et Biocatalyse”, Faculté Saint-Jérôme – Case A62, 13397 Marseille Cedex 20, France, Fax: (+33) 491-288-278 http://www.unice.fr/lcmba/Search for more papers by this authorElisabet Duñach Dr., Elisabet Duñach Dr. [email protected] Laboratoire de Chimie des Molécules Bioactives et des Arômes, Université de Nice-Sophia Antipolis, CNRS, UMR 6001, Parc Valrose, 06108 Nice Cedex 2, France, Fax: (+33) 492-076-151Search for more papers by this author Fanny Grau, Fanny Grau Laboratoire de Chimie des Molécules Bioactives et des Arômes, Université de Nice-Sophia Antipolis, CNRS, UMR 6001, Parc Valrose, 06108 Nice Cedex 2, France, Fax: (+33) 492-076-151Search for more papers by this authorAndreas Heumann Dr., Andreas Heumann Dr. [email protected] Université Paul Cézanne, UMR CNRS 6180 “Chirotechnologies et Biocatalyse”, Faculté Saint-Jérôme – Case A62, 13397 Marseille Cedex 20, France, Fax: (+33) 491-288-278 http://www.unice.fr/lcmba/Search for more papers by this authorElisabet Duñach Dr., Elisabet Duñach Dr. [email protected] Laboratoire de Chimie des Molécules Bioactives et des Arômes, Université de Nice-Sophia Antipolis, CNRS, UMR 6001, Parc Valrose, 06108 Nice Cedex 2, France, Fax: (+33) 492-076-151Search for more papers by this author First published: 30 October 2006 https://doi.org/10.1002/anie.200602020Citations: 56Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract The tin salt Sn(NTf2)4 (Tf=trifluoromethanesulfonyl) is an efficient catalyst for the selective and ring-size-specific cycloisomerization of highly substituted 1,6-dienes to give six-membered-ring carbocycles (see scheme; X=C(CO2Et)2, C(CO2Me)2 C(CN)(CO2Et), etc.). This is the first Lewis acid catalyzed cycloisomerization of this type of substrate. Supporting Information Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2006/z602020_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1T. L. Ho, Carbocycle Construction in Terpene Synthesis, Wiley-VCH, Weinheim, 1988. 2K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. 2002, 114, 1742–1773; Angew. Chem. Int. Ed. 2002, 41, 1668–1698. 3C. Thebtaranonth, Y. Thebtaranonth, Tetrahedron 1990, 46, 1385–1489. 4 4aI. Ojima, M. Tzamarioudaki, Z. Li, R. J. Donovan, Chem. Rev. 1996, 96, 635–662; 4bC. Aubert, O. Buisine, M. Malacria, Chem. Rev. 2002, 102, 813–834. 5A notable exception is the Pd-catalyzed cycloaddition: B. M. Trost, Angew. Chem. 1986, 98, 1–20; Angew. Chem. Int. Ed. Engl. 1986, 25, 1–20. 6 6aB. M. Trost, M. J. Krische, Synlett 1998, 1–16; 6bB. Bogdanovic, Adv. Organomet. Chem. 1979, 17, 105–140. 7Cycloisomerization of 1,6-dienes: 7aR. A. Widenhoefer, Acc. Chem. Res. 2002, 35, 905–913; 7bG. Lloyd-Jones, Org. Biomol. Chem. 2003, 1, 215–236. 8For representative examples with transition metals, see 8aRh: A. Bright, J. F. Malone, J. K. Nicholson, J. Powell, B. L. Shaw, Chem. Commun. 1971, 712–713; 8bR. Grigg, J. F. Malone, T. R. B. Mitchell, A. Ramasubbu, R. M. Scott, J. Chem. Soc. Perkin Trans. 1 1984, 1745–1754; 8cPd: A. Heumann, L. Giordano, A. Tenaglia, Tetrahedron Lett. 2003, 44, 1515–1518; 8dRu: Y. Yamamoto, Y. Nakagai, K. Itoh, Chem. Eur. J. 2004, 10, 231–236; 8eY. Terada, M. Arisawa, M. Nishida, Angew. Chem. 2004, 116, 4155–4159; Angew. Chem. Int. Ed. 2004, 43, 4063–4067; 8fNi: B. Radetich, T. V. RajanBabu, J. Am. Chem. Soc. 1998, 120, 8007–8008; 8gTi: S. Okamoto, T. Livinghouse, J. Am. Chem. Soc. 2000, 122, 1223–1224. 9 9aB. M. Trost, J. M. D. Fortunak, Organometallics 1982, 1, 7–13; 9bA. F. Barrero, J. E. Oltra, M. Alvarez, Tetrahedron Lett. 1998, 39, 1401–1404. 10 10aW. D. Kerber, J. H. Koh, M. R. Gagné, Org. Lett. 2004, 6, 3013–3015; 10bC. Liu, X. Han, X. Wang, R. A. Widenhoefer, J. Am. Chem. Soc. 2004, 126, 3700–3701. 11S. Okamoto, T. Livinghouse, Organometallics 2000, 19, 1449–1451. 12S. Thiele, G. Erker, Chem. Ber. 1997, 130, 201–207. 13K. H. Shaughnessy, R. M. Waymouth, J. Am. Chem. Soc. 1995, 117, 5873–5874. 14 14aW. E. Piers, P. J. Shapiro, E. E. Bunel, J. E. Bercaw, Synlett 1990, 74–84; 14balso see P. W. Chum, S. E. Wilson, Tetrahedron Lett. 1976, 1257–1258. 15W. Oppolzer, V. Snieckus, Angew. Chem. 1978, 90, 506–516; Angew. Chem. Int. Ed. Engl. 1978, 17, 476–486. 16 16aL. F. Tietze, U. Beifuss, M. Ruther, A. Rühlmann, J. Antel, G. M. Sheldrick, Angew. Chem. 1988, 100, 1200–1201; Angew. Chem. Int. Ed. Engl. 1988, 27, 1186–1187; 16bFor the conversion of 1,7-dienes to give cyclohexanes, see Ref. [4]; 16cFor the conversion of 1,5-dienes to give cyclohexanes, see T. Kato, S. Kumazawa, Y. Kitahara, Synthesis 1972, 573–575. 17V. Jäger, W. Kuhn, U. Schubert, Tetrahedron Lett. 1986, 27, 2583–2586. 18L. Coulombel, I. Favier, E. Duñach, Chem. Commun. 2005, 2286–2288. 19C. Hahn, Chem. Eur. J. 2004, 10, 5888–5899. 20I. Favier, E. Duñach, Tetrahedron Lett. 2003, 44, 2031–2032. 21A. Vij, R. L. Kirchmeier, J. M. Shreeve, R. D. Verma, Coord. Chem. Rev. 1997, 158, 413–432. 22The presence of three nonequivalent CH3 groups, two at a quaternary carbon (singlets at δ=0.82 and 0.85 ppm) and another one in a vinylic position (δ=1.7 ppm) was easily deduced from the 1H NMR spectrum. The two ester ethyl groups and two vinylic protons (two broad singlets at δ=4.6 and 4.75 ppm) were also magnetically different. The 13C NMR analysis revealed 17 carbon atoms compatible with the structure of the pentasubstituted cyclohexane derivative 1 b. Complete NMR data for 1 b: 1H NMR (500 MHz, CDCl3): δ=4.78 (1 H, br s), 4.55 (1 H, br s), 4.12 (2 H, br q, J=7.2 Hz), 4.09 (2 H, q, J=7.2 Hz), 2.10 (1 H, ddd, J=13.9, 6.3, 2.8 Hz), 2.03 (1 H, dd, J=7.5, 3.1 Hz), 2.03 (1 H, dd, J=4.6, 3.1 Hz), 1.87 (1 H, dd, J=7.5, 4.6 Hz), 1.86 (1 H, ddd, J=13.9, 11.2, 6.3 Hz), 1.64 (3 H, s), 1.49 (1 H, ddd, J=11.4, 11.2, 6.3 Hz), 1.27 (1 H, ddd, J=11.4, 2.8, 6.3 Hz), 1.17 (3 H, t, J=7.1 Hz), 1.14 (3 H, t, J=7.1 Hz), 0.81 (3 H, s), 0.78 ppm (3 H, s); 13C NMR (126 MHz, CDCl3): δ=172.86, 171.51, 146.83, 113.27, 61.67, 61.36, 55.95, 49.97, 39.19, 33.44, 32.77, 31.13, 27.46, 24.44, 20.44, 14.45, 14.41 ppm. 23See for example: R. Mook, P. M. Sher, Org. Synth. Coll. Vol. VIII, 1993, 381–386. 24The participation of an ester group in cycloisomerizations has already been proposed: L. A. Goj, A. Cisneros, W. Yang, R. A. Widenhoefer, J. Organomet. Chem. 2003, 687, 498–507. 25As we could anticipate, the Sn(IV) catalyst system was unselective for the cyclization of simple dialkyl diallylmalonates. The reaction led preferentially to a mixture of isomeric unsaturated five-membered-ring compounds. 26NMR data for 9 b : 1H NMR (500 MHz, CDCl3): δ=5.08 (1 H, s), 4.11 (4 H, q, J=7.3 Hz), 2.55 (2 H, s), 2.14 (2 H, m), 1.67 (3 H, s), 1.48 (2 H, m), 1.18 (6 H, t, J=7.4 Hz), 0.93 ppm (6 H, s); 13C NMR (126 MHz, CDCl3): δ=172.38 (2 C), 136.44, 130.28, 61.56 (2 C), 57.06, 44.98, 36.10, 35.94, 30.27 (2 C), 29.96, 28.14, 14.39 ppm (2 C); NOESY δ=5.08 ppm correlates with δ=0.93 ppm. 27For transition-metal-catalyzed intramolecular hydroarylation of alkenes, see for example: S. W. Youn, S. J. Pastine, D. Sames, Org. Lett. 2004, 6, 581–584. 28These alkene arylation reactions will be developed in a separate research project. 29aReaction conditions: 5 mol % Tf2NH, nitromethane, 2.5 h at 25 °C. 29bReaction conditions: 5 mol % Tf2NH, nitromethane, 5 h at 101 °C. 30J. J. Eisch, P. O. Otieno, K. Mackenzie, B. W. Kotowicz, ACS Symp. Ser. 2002, 822, 88–103, CAN 137:294994 (Group 13 Chemistry). 31H. Yamamoto, K. Futatsugi, Angew. Chem. 2005, 117, 1958–1977; Angew. Chem. Int. Ed. 2005, 44, 1924–1942. 32We do not observe any reaction of 1 a with either concentrated HCl or p-toluene sulfonic acid in dichloroethane (60 °C, 3 h). 33I. J. S. Fairlamb, S. Grant, A. C. Whitwood, J. Whitthall, A. S. Batsanov, J. C. Collings, J. Organomet. Chem. 2005, 690, 4462–4477. 34 34aB. M. Trost, Acc. Chem. Res. 2002, 35, 695–705; 34bB. M. Trost, Angew. Chem. 1995, 107, 285–307; Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281; 34cB. M. Trost, Science 1991, 254, 1471–1477. Citing Literature Volume45, Issue43November 6, 2006Pages 7285-7289 ReferencesRelatedInformation

Referência(s)