Artigo Acesso aberto Revisado por pares

Ca2+ Regulation of Gelsolin by Its C-terminal Tail

2000; Elsevier BV; Volume: 275; Issue: 36 Linguagem: Inglês

10.1074/jbc.m003732200

ISSN

1083-351X

Autores

Keng-Mean Lin, Marisan Mejillano, Helen L. Yin,

Tópico(s)

Protein Kinase Regulation and GTPase Signaling

Resumo

Gelsolin is activated by Ca(2+) to sever actin filaments. Ca(2+) regulation is conferred on the N-terminal half by the C-terminal half. This paper seeks to understand how Ca(2+) regulates gelsolin by testing the "tail helix latch hypothesis," which is based on the structural data showing that gelsolin has a C-terminal tail helix that contacts the N-terminal half in the absence of Ca(2+). Ca(2+) activation of gelsolin at 37 degrees C occurs in three steps, with apparent K(d) for Ca(2+) of 0.1, 0.3, and 6.4 x 10(-6) m. Tail helix truncation decreases the apparent Ca(2+) requirement for severing to 10(-7) m and eliminates the conformational change observed at 10(-6) m Ca(2+). The large decrease in Ca(2+) requirement for severing is not due to a change in Ca(2+) binding nor to Ca(2+)-independent activation of the C-terminal half per se. Thus, the tail helix latch is primarily responsible for transmitting micromolar Ca(2+) information from the gelsolin C-terminal half to the N-terminal half. Occupation of submicromolar Ca(2+)-binding sites primes gelsolin for severing, but gelsolin cannot sever because the tail latch is still engaged. Unlatching the tail helix by 10(-6) m Ca(2+) releases the final constraint to initiate the severing cascade.

Referência(s)