Artigo Acesso aberto Revisado por pares

Evidence of Chemolithoautotrophy in the Bacterial Community Associated with Alvinella pompejana , a Hydrothermal Vent Polychaete

2003; American Society for Microbiology; Volume: 69; Issue: 9 Linguagem: Inglês

10.1128/aem.69.9.5070-5078.2003

ISSN

1098-5336

Autores

Barbara J. Campbell, Jeffrey L. Stein, S. Craig Cary,

Tópico(s)

Protist diversity and phylogeny

Resumo

ABSTRACT The deep-sea polychaete Alvinella pompejana colonizes tubes on the sides of black smoker chimneys along the East Pacific Rise. A diverse, yet phylogenetically constrained episymbiotic community is obligately associated with its dorsal surface. The morphologically and phylogenetically distinct dominant episymbionts have not yet been cultured, and there are no clearly defined roles for these bacteria in this symbiosis. A large insert fosmid library was screened for the presence of the two dominant phylotypes. Two fosmids, 35.2 and 38 kb, containing phylotype-specific 16S ribosmal DNA sequences were fully sequenced. Each fosmid had a gene encoding ATP citrate lyase, a key enzyme in the reverse tricarboxylic acid (rTCA) cycle, a CO 2 fixation pathway. A selection of episymbiont communities from various geographic locations and vent sites were screened for the presence, diversity, and expression (via reverse transcription-PCR) of the ATP citrate lyase gene. Our results indicate that the ATP citrate lyase gene is not only a consistent presence in these episymbiont communities but is also expressed. Phylogenetically distinct forms of ATP citrate lyase were also found associated with and expressed by bacteria extracted from the tubes of A. pompejana . Utilizing PCR with degenerate primers based on a second key enzyme in the rTCA cycle, 2-oxoglutarate:acceptor oxidoreductase, we also demonstrated the persistent presence and expression of this gene in the episymbiont community. Our results suggest that members of both the episymbiont and the surrounding free-living communities display a chemolithoautotrophic form of growth and therefore contribute fixed carbon to other organisms in the vent community.

Referência(s)