A Preorganized Metalloreceptor for Alkaline Earth Ions Showing Calcium Versus Magnesium Selectivity in Water: Biological Activity of Selected Metal Complexes
2014; Wiley; Volume: 20; Issue: 35 Linguagem: Inglês
10.1002/chem.201403084
ISSN1521-3765
AutoresStefano Amatori, Gianluca Ambrosi, Mirco Fanelli, Mauro Formica, Vieri Fusi, Luca Giorgi, Eleonora Macedi, Mauro Micheloni, Paola Paoli, Patrizia Rossi,
Tópico(s)Molecular Sensors and Ion Detection
ResumoThe N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.
Referência(s)