Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes)
2014; Oxford University Press; Volume: 172; Issue: 3 Linguagem: Inglês
10.1111/zoj.12184
ISSN1096-3642
AutoresRalf Britz, Kevin W. Conway, Lukas Rüber,
Tópico(s)Ichthyology and Marine Biology
ResumoZoological Journal of the Linnean SocietyVolume 172, Issue 3 p. 556-615 Original Article Miniatures, morphology and molecules: Paedocypris and its phylogenetic position (Teleostei, Cypriniformes) Ralf Britz, Corresponding Author Ralf Britz Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD UKCorresponding author. E-mail: [email protected]Search for more papers by this authorKevin W. Conway, Kevin W. Conway Department of Wildlife and Fisheries Sciences and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX, 77843 USASearch for more papers by this authorLukas Rüber, Lukas Rüber Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, SwitzerlandSearch for more papers by this author Ralf Britz, Corresponding Author Ralf Britz Department of Zoology, Natural History Museum, Cromwell Road, London, SW7 5BD UKCorresponding author. E-mail: [email protected]Search for more papers by this authorKevin W. Conway, Kevin W. Conway Department of Wildlife and Fisheries Sciences and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, TX, 77843 USASearch for more papers by this authorLukas Rüber, Lukas Rüber Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, SwitzerlandSearch for more papers by this author First published: 08 October 2014 https://doi.org/10.1111/zoj.12184Citations: 6Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract We review the morphological and molecular evidence that Mayden & Chen recently used to infer that the developmentally truncated fish genus Paedocypris is not a member of the teleost order Cypriniformes or carp-like fishes, but is 'the basal sister group to all Cypriniformes'. This hypothesis contradicts several previous studies that used molecular sequence data or morphological characters. A review of the morphological characters that Mayden & Chen discussed and mapped onto their 'simplified tree' shows that these, analysed alone, rather support a close relationship of the cyprinids Sundadanio, Danionella, and Paedocypris. We also present four additional analyses of morphological data, which all contradict Mayden & Chen's result. Despite its highly reductive skeleton, posing a serious problem when analysing its phylogenetic position with skeletal characters, the presence in Paedocypris of the basioccipital masticatory plate is compelling evidence that it is a member of the Cyprinoidei (Cyprinidae plus Psilorhynchidae). Our reanalysis and exploration of their molecular sequence data shows that only a single gene, EGR3, of the six nuclear genes analysed by Mayden & Chen, is responsible for the position of Paedocypris as 'the basal sister group to all Cypriniformes'. Three independent methods to visualize and analyse phylogenetic signal and conflict of data sets (phylogenetic networks, splits analysis methods or SAMS, and site-wise likelihood analyses) reveal a high level of character conflict and noise in Mayden & Chen's data set. The 'basal' position of Paedocypris seems to be the outcome of the interplay of two long-branch effects. We apply the same analytical methods to the data set from Rüber et al.'s molecular analysis of the phylogenetic position of Paedocypris and discuss our findings. We conclude that none of the molecular data sets compiled to date can establish the phylogenetic position of Paedocypris with confidence. Morphological data suggest that Paedocypris and Danionella are sister genera, and that their closest relative is Sundadanio, although the position of these three miniatures among cyprinoids is still unclear. © 2014 The Linnean Society of London Supporting Information Filename Description zoj12184-sup-0001-si.pdf1.5 MB Figure S1. Morphological character distributions for analysis 2. Figure S2. Morphological character distributions for analysis 3. Figure S3. Morphological character distributions for analysis 4. Figure S4. Morphological character distributions for analysis 5. Figure S5. Single-gene maximum-likelihood analyses of the Mayden and Chen (2010) data set, 50% majority rule bootstrap tree shown. Figure S6. Single-gene maximum-likelihood analyses of the Mayden and Chen (2010) data set, 50% majority rule bootstrap tree shown. Figure S7. Maximum likelihood (ML) tree of the combined Mayden & Chen (2010) data set comprising 4827 bp of five nuclear genes (EGR1, EGR2B, IRBP, RAG1, and RH). Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References Begle DP. 1991. Relationships of the osmeroid fishes and the use of reductive characters in phylogenetic analysis. Systematic Zoology 40: 33–53. Betancur-R. R, Broughton RE, Wiley EO, Carpenter K, Lopez JA, Li C, Holcroft NI, Arcila D, Sanciangco M, Cureton J, Zhang F, Buser T, Campbell M, Rowley T, Ballesteros JA, Lu G, Grande T, Arratia G, Ortí G. 2013b. The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life. 2013 Apr 18. Betancur-R. R, Li C, Munroe TA, Ballesteros JA, Orti G. 2013a. Addressing gene tree discordance and non-stationarity to resolve a multi-locus phylogeny of the flatfishes (Teleostei: Pleuronectiformes). Systematic Biology 62: 763–785. doi: 10.1093/sysbio/syt039. Betancur-R. R, Ortí G. 2014. Molecular evidence for the monophyly of flatfishes (Carangimorpharia: Pleuronectiformes). Molecular Phylogenetics and Evolution 73: 18–22. Betancur-R. R, Wiley EO, Miya M, Lecointre G, Bailly N, Ortí G. 2013c. New and revised classification of bony fishes version 2. Version date: 27 Nov 2013. Available at: http://www.deepfin.org/Classification_v2.htm Betancur-R. R, Wiley E, Bailly N, Miya M, Lecointre G, Ortí G. 2014. Phylogenetic Classification of Bony Fishes, Version 3. Available at: http://www.deepfin.org/Classification_v3.htm Bird NC, Mabee PM. 2003. Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi: Cyprinidae). Developmental Dynamics 228: 337–357. Bourlat SJ, Juliusdottir T, Lowe CJ, Freeman R, Aronowicz J, Kirschner M, Lander ES, Thorndyke M, Nakano H, Kohn AB, Heyland A, Moroz LL, Copley RR, Telford MJ. 2006. Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature 444: 85–88. Britz R. 1997. Egg surface structure and larval cement glands in nandid and badid fishes (Teleostei, Percomorpha), with remarks on phylogeny and zoogeography. American Museum Novitates 3195: 1–17. Britz R. 2009. Danionella priapus, a new species of miniature cyprinid fish from West Bengal, India (Teleostei: Cypriniformes: Cyprinidae). Zootaxa 2277: 53–60. Britz R, Cambray J. 2001. Structure of egg surfaces and attachment organs in anabantoids. Ichthyological Exploration of Freshwaters 12: 267–288. Britz R, Conway KW. 2009. Osteology of Paedocypris, a miniature and highly developmentally truncated fish (Teleostei: Ostariophysi: Cyprinidae). Journal of Morphology 270: 389–412. Britz R, Conway KW. 2011. The cypriniformes tree of confusion. Pg. 73–78. In: M. R. de Carvalho & M. T. Craig (eds.), Morphological and molecular approaches to the phylogeny of fishes: integration or conflict? Zootaxa 2946: 1–142. Britz R, Conway KW, Rüber L. 2009. Spectacular morphological novelty in a miniature cyprinid fish, Danionella dracula n. sp. Proceedings of the Royal Society London B 276: 2179–2186. Britz R, Johnson GD. 2011. Comments on the establishment of the one to one relationship between characters as a prerequisite for homology assessment in phylogenetic studies. Zootaxa 2946: 65–72. Britz R, Kottelat M. 2008. Paedocypris carbunculus, a new species of miniature fish from Borneo (Teleostei: Cypriniformes: Cyprinidae). Raffles Bulletin of Zoology 56: 415–422. Britz R, Kottelat M, Tan HH. 2012. Fangfangia spinocleithralis, a new genus and species of miniature cyprinid from Kalimantan Tengah, Borneo, Indonesia (Teleostei: Cypriniformes: Cyprinidae). Ichthyological Exploration of Freshwaters 22: 327–335. Bufalino AP, Mayden RL. 2010a. Phylogenetic evaluation of North American Leuciscidae (Actinopterygii: Cypriniformes: Cyprinoidea) as inferred from analyses of mitochondrial and nuclear DNA sequences. Systematics and Biodiversity 8: 493–505. Bufalino AP, Mayden RL. 2010b. Phylogenetic relationships of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) as inferred from S7 nuclear DNA sequences. Molecular Phylogenetics and Evolution 55: 143–152. Bufalino AP, Mayden RL. 2010c. Molecular phylogenetics of North American phoxinins (Actinopterygii: Cypriniformes: Leuciscidae) based on RAG1 and S7 nuclear DNA sequence data. Molecular Phylogenetics and Evolution 55: 274–283. Campbell MA, Chen WJ, Lopez JA. 2013. Are flatfishes (Pleuronectiformes) monophyletic? Molecular Phylogenetics and Evolution 69: 763–785. Available online 19 July 2013. Campbell MA, Chen WJ, Lopez JA. 2014. Molecular data do not provide unambiguous support for the monophyly of flatfishes (Pleuronectiformes): a reply to Betancur-R and Ortí. Molecular Phylogenetics and Evolution 75: 149–153. Carvalho MR de, Craig MT, eds. 2011. Morphological and molecular approaches to the phylogeny of fishes: integration or conflict? Zootaxa 2946: 1–142. Cavender TM, Coburn M. 1992. Phylogenetic relationships of North American Cyprinidae. In: R Mayden, ed. Systematics, historical ecology and North American freshwater fishes. Stanford: Stanford University Press, 293–327. Chen WJ, Lavoué S, Mayden RL. 2013. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei). Evolution 67: 2218–2239. Chen WJ, Mayden RL. 2009. Molecular systematics of the Cyprinoidea (Teleostei: Cypriniformes), the world's largest clade of freshwater fishes: further evidence from six nuclear genes. Molecular Phylogenetics and Evolution 52: 544–549. Chen WJ, Miya M, Saitoh K, Mayden RL. 2008. Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: the order Cypriniformes (Ostariophysi) as a?case study. Gene 423: 125–134. Chen XL, Yue PQ, Lin RD. 1984. [Major groups within the family Cyprinidae and their phylogenetic relationships]. Acta Zootaxonomica Sinica 9: 424–440. [In Chinese with English summary]. Conway KW. 2005. Monophyly of the genus Boraras (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters 16: 249–264. Conway KW. 2011. Osteology of the South Asian Genus Psilorhynchus McClelland, 1839 (Teleostei: Ostariophysi: Psilorhynchidae) with investigation of its phylogenetic relationships within the Order Cypriniformes. Zoological Journal of the Linnean Society 163: 50–154. Conway KW, Chen WJ, Mayden RL. 2008. The 'Celestial Pearl danio' is a miniature Danio (s.s.) (Ostariophysi: Cyprinidae): evidence from morphology and molecules. Zootaxa 1686: 1–28. Conway KW, Kottelat M, Tan HH. 2011. Review of the Southeast Asian miniature cyprinid genus Sundadanio (Ostariophysi: Cyprinidae) with descriptions of seven new species from Indonesia and Malaysia. Ichthyological Exploration of Freshwaters 22: 251–288. Cubbage CC, Mabee PM. 1996. Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi: Cyprinidae). Journal of Morphology 229: 121–160. Doosey MH, Bart HL. 2011. Morphological variation of the palatal organ and chewing pad of Catostomidae (Teleostei: Cypriniformes). Journal of Morphology 272: 1092–1108. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A. 2011. Geneious v5.4, Available at http://www.geneious.com Eastman JT. 1977. The pharyngeal bones and teeth of catostomid fishes. American Midland Naturalist 97: 68–88. Evans NM, Holder MT, Barbeitos MS, Okamura B, Cartwright P. 2010. The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal data sets. Molecular Biology and Evolution 27: 2733–2746. Fang F, Norén M, Liao TY, Källersjö M, Kullander SO. 2009. Molecular phylogenetic interrelationships of the south Asian cyprinid genera Danio, Devario and Microrasbora (Teleostei, Cyprinidae, Danioninae). Zoologica Scripta 38: 237–256. Felsenstein J. 1978. Cases in which parsimony or compatibilty methods will be positively misleading. Systematic Zoology 27: 401–410. Fink SV, Fink WL. 1981. Interrelationships of the ostariophysan fishes (Teleostei). Zoological Journal of the Linnean Society 72: 297–353. Fink SV, Fink WL. 1996. Interrelationships of the Ostariophysi. In: M Stiassny, L Parenti, GD Johnson, eds. Interrelationships of fishes. San Diego: Academic Press, 209–249. Funch P, Christensen RM. 1995. Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature 378: 711–714. Gould SJ. 1977. Ontogeny and phylogeny. Cambridge, MA: The Belknap Press of Harvard University Press. Hanken J, Wake DB. 1993. Miniaturization of body size: organismal consequences and evolutionary significance. Annual Review of Ecology and Systematics 24: 501–519. Hennig W. 1966. Phylogenetic systematics. Urbana, USA: University of Illinois Press. Hernandez LP, Bird NC, Staab KL. 2007. Using zebrafish to investigate cypriniform evolutionary novelties: functional development and evolutionary diversification of the kinethmoid. Journal of Experimental Zoology (Mol Dev Evol) 308B: 625–641. Howes GJ. 1981. Anatomy and phylogeny of the Chinese Major Carps Ctenopharyngodon Steind., 1866 and Hypophthalmichthys Blkr., 1860. Bulletin of the British Museum of Natural History, Zoology 41: 1–52. Howes GJ. 1991. Systematics and biogeography: an overview. In: IJ Winfield, JS Nelson, eds. Cyprinid fishes systematics, biology and exploitation. London: Chapman and Hall, 1–33. Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. Software available at http://www.splitstree.org Jeffroy O, Brinkmann H, Delsuc F, Philippe H. 2006. Phylogenomics: the beginning of incongruence? Trends in Genetics 22: 225–231. Jenner RA, Littlewood DTJ. 2010. Invertebrate Problematica: kinds, causes, and solutions. In: MJ Telford, DTJ Littlewood, eds. Animal evolution – genomes, fossils and trees. Oxford: Oxford University Press, 107–126. Johnson GD, Brothers EB. 1993. Schindleria: a paedomorphic goby (Teleostei: Gobioidei). Bulletin of Marine Sciences 52: 441–471. Kishino H, Hasegawa M. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. Journal of Molecular Evolution 29: 170–179. Kottelat M, Britz R, Tan HH, Witte KE. 2006. Paedocypris, a new genus of Southeast Asian cyprinid fish with a remarkable sexual dimorphism, comprises the world's smallest vertebrate. Proceedings of the Royal Society London B 273: 895–899. Liao T, Kullander SO. 2013. Phylogenetic significance of the kinethmoid-associated Y-shaped ligament and long intercostal ligaments in the Cypriniformes (Actinopterygii: Ostariophysi). Zoologica Scripta 42: 71–87. Liu S, Tan HH, Tan SL, Hong Y. 2012. Chromosome evolution and genome miniaturization in minifish. PLoS ONE 7: e37305. doi:10.1371/journal.pone.0037305. Maddison DR, Maddison WP. 2002. MacClade 4.05 analysis of phylogeny and character evolution [computer software manual]. Sunderland, MA: Sinauer Associates. Maddison WP, Donoghue MJ, Maddison DR. 1984. Outgroup analysis and parsimony. Systematic Zoology 33: 83–103. Mayden RL, Chen WJ. 2010. The world's smallest vertebrate species of the genus Paedocypris: a new family of freshwater fishes and the sister group to the world's most diverse clade of freshwater fishes (Teleostei: Cypriniformes). Molecular Phylogenetics and Evolution 57: 152–175. McMenamin SK, Parichy DM. 2012. Metamorphosis in teleosts. Current topics in Developmental Biology 103: 127–165. Mooi RD, Gill AC. 2010. Phylogenies without synapomorphies – A crisis in fish systematics: time to show some character. Zootaxa 2450: 26–40. Nelson G. 1978. Ontogeny, phylogeny, paleontology, and the biogenetic law. Systematic Zoology 27: 324–345. Nixon KC. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407–414. Patterson C. 1982. Morphological characters and homology. In: KA Joysey, AE Friday, eds. Problems of phylogenetic reconstruction. London: Academic Press, 21–74. Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M, Wörheide G, Baurain D. 2011. Resolving difficult phylogenetic questions: why more sequences are not enough. PLoS Biology 9: e1000602. doi:10.1371/journal.pbio.1000602. Reid GM. 1982. The form, function and phylogenetic significance of the vomero-palatine organ in cyprinid fishes. Journal of Natural History 16: 497–510. Remane A. 1952. Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Leipzig: Akademische Verlagsgesellschaft. Rieppel O, Kearney M. 2002. Similarity. Biological Journal of the Linnean Society 75: 59–82. Roberts TR. 1986. Danionella translucida, a new genus and species of cyprinid fish from Burma, one of the smallest living vertebrates. Environmental Biology of Fishes 16: 231–241. Rüber L, Kottelat M, Tan HH, Ng PKL, Britz R. 2007. Evolution of miniaturization and the phylogenetic position of Paedocypris, comprising the world's smallest vertebrate. BMC Evolutionary Biology 7: 38–47. Salichos L, Rokas A. 2013. Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497: 327–331. Sawada Y. 1982. Phylogeny and Zoogeography of the Superfamily Cobitoidea (Cyprinoidei, Cypriniformes). Memoirs of the Faculty of Fisheries, Hokkaido University 28: 65–223. Schaefer SA, Weitzman SH, Britski HA. 1989. Review of the Neotropical catfish genus Scoloplax (Pisces: Loricarioidei: Scoloplacidae) with comments on reductive characters in phylogenetic analysis. Proceedings of the Academy of Natural Sciences of Philadelphia 141: 181–211. Schönhuth S, Shiozawa DK, Dowling TE, Mayden RL. 2012. Molecular systematics of western North American cyprinids (Cypriniformes: Cyprinidae). Zootaxa 3586: 281–303. Shimodaira H. 2002. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of Statistical Planning and inference 90: 227–244. Shimodaira H, Hasegawa M. 1999. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution 16: 1114–1116. Shimodaira H, Hasegawa M. 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17: 1246–1247. Sibbing FA. 1982. Pharyngeal mastication and food transport in the carp (Cyprinus carpio L.): a cineradiographic and electromyographic study. Journal of Morphology 172: 223–258. Siebert DJ. 1987. Interrelationships among families of the order Cypriniformes (Teleostei). Unpublished D. Phil. Thesis. City University of New York. Siebert DJ. 1997. Notes on the anatomy and relationships of Sundasalanx Roberts (Teleostei, Clupeidae), with descriptions of four new species from Borneo. Bulletin. of the Natural History Museum London (Zoology) 63: 13–26. Sikes DS, Lewis PO. 2001. PAUPRat: PAUP* implementation of the parsimony ratchet. Beta software, version 1. (Distributed by the Authors, Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, USA.). Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. Sulaiman ZH, Mayden RL. 2012. Cypriniformes of Borneo (Actinopterygii, Otophysi): an extraordinary fauna for integrated studies on diversity, systematics, evolution, ecology, and conservation. Zootaxa 3586: 359–376. Swofford DL. 2000. PAUP*: phylogenetic analysis using parsimony (*and other methods) [computer software manual]. Sunderland, MA: Sinauer Associates. Tang KL, Agnew MK, Chen WJ, Hirt MV, Raley ME, Sado T, Schneider LM, Yang L, Bart HL, He S, Liu H, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL. 2011. Phylogeny of the gudgeons (Teleostei: Cyprinidae: Gobioninae). Molecular Phylogenetics and Evolution 61: 103–124. Tang KL, Agnew MK, Hirt MV, Sado T, Schneider LM, Freyhof J, Sulaiman Z, Swartz E, Vidthayanon C, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL. 2010. Systematics of the subfamily Danioninae (Teleostei: Cypriniformes: Cyprinidae). Molecular Phylogenetics and Evolution 57: 189–214. Tang KL, Lumbantobing DN, Mayden RL. 2013. The phylogenetic placement of Oxygaster van Hasselt, 1823 (Teleostei: Cypriniformes: Cyprinidae) and the taxonomic status of the family-group name Oxygastrinae Bleeker, 1860. Copeia 2013: 13–22. Taylor WR, Van Dyke GC. 1985. Revised procedures for staining and clearing small fishes and other vertebrates for bone and cartilage study. Cybium 9: 107–119. Wägele JW, Letsch H, Klussmann-Kolb A, Mayer C, Misof B, Wägele H. 2009. Phylogenetic support values are not necessarily informative: the case of the Serialia hypothesis (a mollusk phylogeny). Frontiers in Zoology 6: 12. Wägele JW, Mayer C. 2007. Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evolutionary Biology 7: 147. Wägele JW, Rödding F. 1998. A Priori Estimation of Phylogenetic Information Conserved in Aligned Sequences. Molecular Phylogenetics and Evolution 9: 358–365. Wang XZ, Gan XN, Li JB, Mayden RL, He SP. 2012. Cyprinid phylogeny based on Bayesian and maximum likelihood analyses of partitioned data: implications for Cyprinidae systematics. Science China Life Sciences 55: 761–773. Weitzman SH. 1974. Osteology and evolutionary relationships of the Sternoptychidae, with a new classification of stomiatoid families. Bulletin of the American Museum of Natural History 153: 327–478. Weitzman SH, Fink SV. 1985. Xenurobryconin phylogeny and putative pheromone pumps in glandulocaudine fishes (Teleostei: Characidae). Smithsonian Contributions to Zoology 421: 1–121. Weitzman SH, Vari RP. 1988. Miniaturization in South American freshwater fishes; an overview and discussion. Proceedings of the Biological Society of Washington 101: 444–465. Winterbottom R. 1991. The Trimmatom nanus species complex (Actinopterygii, Gobiidae): phylogeny and progenetic heterochrony. Systematic Zoology 39: 253–265. Citing Literature Volume172, Issue3November 2014Pages 556-615 ReferencesRelatedInformation
Referência(s)