Metalloporphyrin-Mediated Asymmetric Nitrogen-Atom Transfer to Hydrocarbons: Aziridination of Alkenes and Amidation of Saturated C−H Bonds Catalyzed by Chiral Ruthenium and Manganese Porphyrins
2002; Wiley; Volume: 8; Issue: 7 Linguagem: Inglês
10.1002/1521-3765(20020402)8
ISSN1521-3765
AutoresJiang‐Lin Liang, Jie‐Sheng Huang, Xiao‐Qi Yu, Nianyong Zhu, Chi‐Ming Che,
Tópico(s)Asymmetric Hydrogenation and Catalysis
ResumoChemistry – A European JournalVolume 8, Issue 7 p. 1563-1572 Full Paper Metalloporphyrin-Mediated Asymmetric Nitrogen-Atom Transfer to Hydrocarbons: Aziridination of Alkenes and Amidation of Saturated C−H Bonds Catalyzed by Chiral Ruthenium and Manganese Porphyrins Jiang-Lin Liang, Jiang-Lin Liang Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorJie-Sheng Huang Dr., Jie-Sheng Huang Dr. Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorXiao-Qi Yu Dr., Xiao-Qi Yu Dr. Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorNianyong Zhu Dr., Nianyong Zhu Dr. Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorChi-Ming Che Prof., Chi-Ming Che Prof. [email protected] Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this author Jiang-Lin Liang, Jiang-Lin Liang Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorJie-Sheng Huang Dr., Jie-Sheng Huang Dr. Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorXiao-Qi Yu Dr., Xiao-Qi Yu Dr. Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorNianyong Zhu Dr., Nianyong Zhu Dr. Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this authorChi-Ming Che Prof., Chi-Ming Che Prof. [email protected] Department of Chemistry and Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong (China) Fax: (+852) 2857-1586Search for more papers by this author First published: 28 March 2002 https://doi.org/10.1002/1521-3765(20020402)8:7 3.0.CO;2-VCitations: 202Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract Good to excellent aziridine or amide selectivities have been observed from mass balance studies for the enantioselective aziridination or enantio/diastereoselective amidation of hydrocarbons (including cholesteryl acetate) with PhI=NTs or “PhI(OAc)2 + NH2R (R=Ts, Ns, or SO2Me)” catalyzed by chiral metalloporphyrin 1 or 2 (see scheme). The “PhI(OAc)2 + NH2SO2Me” amidation of benzylic hydrocarbons catalyzed by 1 or 2 realized an enantioselective formation of N-substituted methanesulfonamides from metal-catalyzed direct amidation of saturated C−H bonds. Abstract Chiral metalloporphyrins [Mn(Por*)(OH)(MeOH)] (1) and [Ru(Por*)(CO)(EtOH)] (2) catalyze asymmetric aziridination of aromatic alkenes and asymmetric amidation of benzylic hydrocarbons to give moderate enantiomeric excesses. The mass balance in these nitrogen-atom-transfer processes has been examined. With PhI=NTs as the nitrogen source, the aziridination of styrenes, trans-stilbene, 2-vinylnaphthalene, indene, and 2,2-dimethylchromene catalyzed by complex 1 or 2 resulted in up to 99 % substrate conversions and up to 94 % aziridine selectivities, whereas the amidation of ethylbenzenes, indan, tetralin, 1-, and 2-ethylnaphthalene catalyzed by complex 2 led to substrate conversions of up to 32 % and amide selectivities of up to 91 %. Complex 1 or 2 can also catalyze the asymmetric amidation of 4-methoxyethylbenzene, tetralin, and 2-ethylnaphthalene with “PhI(OAc)2 + NH2SO2Me”, affording the N-substituted methanesulfonamides in up to 56 % ee with substrate conversions of up to 34 % and amide selectivities of up to 92 %. Extension of the “complex 1 + PhI=NTs” or “complex 1 + PhI(OAc)2 + NH2R (R=Ts, Ns)” amidation protocol to a steroid resulted in diastereoselective amidation of cholesteryl acetate at the allylic C−H bonds at C-7 with substrate conversions of up to 49 % and amide selectivities of up to 90 % (α:β ratio: up to 4.2:1). An aziridination- and amidation-active chiral bis(tosylimido)ruthenium(VI) porphyrin, [Ru(Por*)(NTs)2] (3), and a ruthenium porphyrin aziridine adduct, [Ru(Por*)(CO)(TsAz)] (4, TsAz=N-tosyl-2- (4-chlorophenyl)aziridine), have been isolated from the reaction of 2 with PhI=NTs and N-tosyl-2-(4-chlorophenyl)aziridine, respectively. The imidoruthenium porphyrin 3 could be an active species in the aziridination or amidation catalyzed by complex 2 described above. The second-order rate constants for the reactions of 3 with styrenes, 2-vinylnaphthalene, indene, ethylbenzenes, and 2-ethylnaphthalene range from 3.7–42.5×10−3 dm3 mol−1 s−1. An X-ray structure determination of complex 4 reveals an O- rather than N-coordination of the aziridine axial ligand. The fact that the N-tosylaziridine in 4 does not adopt an N-coordination mode disfavors a concerted pathway in the aziridination by a tosylimido ruthenium porphyrin active species. References 1 Reviews: Google Scholar 1a B. Meunier, Chem. Rev. 1992, 92, 1411; 10.1021/cr00014a008 CASWeb of Science®Google Scholar 1b J. P. Collman, X. Zhang, V. J. Lee, E. S. Uffelman, J. I. Brauman, Science 1993, 261, 1404; selected recent examples: 10.1126/science.8367724 CASPubMedWeb of Science®Google Scholar 1c J. P. Collman, V. J. Lee, C. J. Kellen-Yuen, X. Zhang, J. A. Ibers, J. I. Brauman, J. Am. Chem. Soc. 1995, 117, 692; 10.1021/ja00107a013 CASWeb of Science®Google Scholar 1d Z. Gross, S. Ini, M. Kapon, S. Cohen, Tetrahedron Lett. 1996, 37, 7325; 10.1016/0040-4039(96)01599-7 CASWeb of Science®Google Scholar 1e A. Berkessel, M. Frauenkron, J. Chem. Soc. Perkin Trans. 1 1997, 2265; 10.1039/a704275b CASWeb of Science®Google Scholar 1f Z. Gross, S. Ini, J. Org. Chem. 1997, 62, 5514; 10.1021/jo970463w CASWeb of Science®Google Scholar 1g R. L. Halterman, S.-T. Jan, H. L. Nimmons, D. J. Standlee, M. A. Khan, Tetrahedron 1997, 53, 11 257; 10.1016/S0040-4020(97)00729-1 CASWeb of Science®Google Scholar 1h T.-S. Lai, R. Zhang, K.-K. Cheung, H.-L. Kwong, C.-M. Che, Chem. Commun. 1998, 1583; 10.1039/a802009d CASWeb of Science®Google Scholar 1i T.-S. Lai, H.-L. Kwong, R. Zhang, C.-M. Che, J. Chem. Soc. Dalton Trans. 1998, 3559; 10.1039/a802587h CASWeb of Science®Google Scholar 1j J. P. Collman, Z. Wang, A. Straumanis, M. Quelquejeu, E. Rose, J. Am. Chem. Soc. 1999, 121, 460; 10.1021/ja9818699 CASWeb of Science®Google Scholar 1k X.-Q. Yu, J.-S. Huang, W.-Y. Yu, C.-M. Che, J. Am. Chem. Soc. 2000, 122, 5337. 10.1021/ja000461k CASWeb of Science®Google Scholar 2 Google Scholar 2a J. T. Groves, T. Takahashi, J. Am. Chem. Soc. 1983, 105, 2073; 10.1021/ja00345a071 CASWeb of Science®Google Scholar 2b D. Mansuy, J.-P. Mahy, A. Dureault, G. Bedi, P. Battioni, J. Chem. Soc. Chem. Commun. 1984, 1161; 10.1039/c39840001161 CASWeb of Science®Google Scholar 2c J.-P. Mahy, G. Bedi, P. Battioni, D. Mansuy, J. Chem. Soc. Perkin Trans. 2 1988, 1517; 10.1039/p29880001517 CASWeb of Science®Google Scholar 2d S.-M. Au, S.-B. Zhang, W.-H. Fung, W.-Y. Yu, C.-M. Che, K.-K. Cheung, Chem. Commun. 1998, 2677; 10.1039/a808048h CASWeb of Science®Google Scholar 2e S.-M. Au, J.-S. Huang, W.-Y. Yu, W.-H. Fung, C.-M. Che, J. Am. Chem. Soc. 1999, 121, 9120. 10.1021/ja9913481 CASWeb of Science®Google Scholar 3 Google Scholar 3a H. J. Callot, C. Piechocki, Tetrahedron Lett. 1980, 21, 3489; 10.1016/S0040-4039(00)78722-3 CASWeb of Science®Google Scholar 3b S. O′Malley, T. Kodadek, Tetrahedron Lett. 1991, 32, 2445; 10.1016/S0040-4039(00)74349-8 CASWeb of Science®Google Scholar 3c J. L. Maxwell, K. C. Brown, D. W. Bartley, T. Kodadek, Science 1992, 256, 1544; 10.1126/science.256.5063.1544 CASPubMedWeb of Science®Google Scholar 3d J. L. Maxwell, S. O′Malley, K. C. Brown, T. Kodadek, Organometallics 1992, 11, 645; 10.1021/om00038a023 CASWeb of Science®Google Scholar 3e S. O′Malley, T. Kodadek, Organometallics 1992, 11, 2299; 10.1021/om00042a052 CASWeb of Science®Google Scholar 3f K. C. Brown, T. Kodadek, J. Am. Chem. Soc. 1992, 114, 8336; 10.1021/ja00047a081 CASWeb of Science®Google Scholar 3g D. W. Bartley, T. Kodadek, J. Am. Chem. Soc. 1993, 115, 1656; 10.1021/ja00058a007 CASWeb of Science®Google Scholar 3h D. A. Smith, D. N. Reynolds, L. K. Woo, J. Am. Chem. Soc. 1993, 115, 2511; 10.1021/ja00059a059 CASWeb of Science®Google Scholar 3i J. R. Wolf, C. G. Hamaker, J.-P. Djukic, T. Kodadek, L. K. Woo, J. Am. Chem. Soc. 1995, 117, 9194; 10.1021/ja00141a011 CASWeb of Science®Google Scholar 3j E. Galardon, Le Maux, G. Simonneaux, Chem. Commun. 1997, 927; 10.1039/a700098g CASWeb of Science®Google Scholar 3k W.-C. Lo, C.-M. Che, K.-F. Cheng, T. C. W. Mak, Chem. Commun. 1997, 1205; 10.1039/a608080d CASWeb of Science®Google Scholar 3l M. Frauenkron, A. Berkessel, Tetrahedron Lett. 1997, 38, 7175; 10.1016/S0040-4039(97)01763-2 CASWeb of Science®Google Scholar 3m E. Galardon, S. Roué, Le Maux, G. Simonneaux, Tetrahedron Lett. 1998, 39, 2333; 10.1016/S0040-4039(98)00194-4 CASWeb of Science®Google Scholar 3n Z. Gross, N. Galili, L. Simkhovich, Tetrahedron Lett. 1999, 40, 1571; 10.1016/S0040-4039(98)02647-1 CASWeb of Science®Google Scholar 3o E. Galardon, Le Maux, G. Simonneaux, Tetrahedron 2000, 56, 615; 10.1016/S0040-4020(99)01050-9 CASWeb of Science®Google Scholar 3p C.-M. Che, J.-S. Huang, F.-W. Lee, Y. Li, T.-S. Lai, H.-L. Kwong, P.-F. Teng, W.-S. Lee, W.-C. Lo, S.-M. Peng, Z.-Y. Zhou, J. Am. Chem. Soc. 2001, 123, 4119; 10.1021/ja001416f CASPubMedWeb of Science®Google Scholar 3q Y. Li, J.-S. Huang, Z.-Y. Zhou, C.-M. Che, J. Am. Chem. Soc. 2001, 123, 4843. 10.1021/ja003184q CASPubMedWeb of Science®Google Scholar 4 Reviews: Google Scholar 4a P. E. Ellis, Jr., J. E. Lyons, Coord. Chem. Rev. 1990, 105, 181; 10.1016/0010-8545(90)80022-L Web of Science®Google Scholar 4b D. Mansuy, Coord. Chem. Rev. 1993, 125, 129; selected recent examples: 10.1016/0010-8545(93)85013-T CASWeb of Science®Google Scholar 4c J. T. Groves, P. Viski, J. Am. Chem. Soc. 1989, 111, 8537; 10.1021/ja00204a047 CASWeb of Science®Google Scholar 4d H. Ohtake, T. Higuchi, M. Hirobe, J. Am. Chem. Soc. 1992, 114, 10 660; 10.1021/ja00052a086 CASWeb of Science®Google Scholar 4e A. Sorokin, A. Robert, B. Meunier, J. Am. Chem. Soc. 1993, 115, 7293, and references therein; 10.1021/ja00069a031 CASWeb of Science®Google Scholar 4f M. W. Grinstaff, M. G. Hill, J. A. Labinger, H. B. Gray, Science 1994, 264, 1311; 10.1126/science.8191283 CASPubMedWeb of Science®Google Scholar 4g R. Zhang, W.-Y. Yu, T.-S. Lai, C.-M. Che, Chem. Commun. 1999, 1791; 10.1039/a904100a Web of Science®Google Scholar 4h Z. Gross, S. Ini, Org. Lett. 1999, 1, 2077; 10.1021/ol991131b CASWeb of Science®Google Scholar 4i K. Wietzerbin, J. G. Muller, R. A. Jameton, G. Pratviel, J. Bernadou, B. Meunier, C. J. Burrows, Inorg. Chem. 1999, 38, 4123; 10.1021/ic990537h CASWeb of Science®Google Scholar 4j J. F. Bartoli, V. Mouries-Mansuy, Le Barch-Ozette, M. Palacio, P. Battioni, D. Mansuy, Chem. Commun. 2000, 827; 10.1039/b001776k CASWeb of Science®Google Scholar 4k W. Nam, M. H. Lim, S. K. Moon, C. Kim, J. Am. Chem. Soc. 2000, 122, 10 805. 10.1021/ja0010554 CASWeb of Science®Google Scholar 5 Google Scholar 5a R. Breslow, S. H. Gellman, J. Chem. Soc. Chem. Commun. 1982, 1400; 10.1039/c39820001400 CASWeb of Science®Google Scholar 5b R. Breslow, S. H. Gellman, J. Am. Chem. Soc. 1983, 105, 6728; 10.1021/ja00360a039 CASWeb of Science®Google Scholar 5c J. P. Mahy, G. Bedi, P. Battioni, D. Mansuy, Tetrahedron Lett. 1988, 29, 1927; 10.1016/S0040-4039(00)82081-X CASWeb of Science®Google Scholar 5d J. P. Mahy, G. Bedi, P. Battioni, D. Mansuy, New J. Chem. 1989, 13, 651; CASWeb of Science®Google Scholar 5e J. Yang, R. Weinberg, R. Breslow, Chem. Commun. 2000, 531; Google Scholar 5f X.-Q. Yu, J.-S. Huang, X.-G. Zhou, C.-M. Che, Org. Lett. 2000, 2, 2233. 10.1021/ol000107r CASPubMedWeb of Science®Google Scholar 6 T.-S. Lai, H.-L. Kwong, C.-M. Che, S.-M. Peng, Chem. Commun. 1997, 2373. 10.1039/a706395d CASWeb of Science®Google Scholar 7 X.-G. Zhou, X.-Q. Yu, J.-S. Huang, C.-M. Che, Chem. Commun. 1999, 2377. 10.1039/a907653k CASWeb of Science®Google Scholar 8 J. P. Simonato, J. Pecaut, W. R. Scheidt, J. C. Marchon, Chem. Commun. 1999, 989. 10.1039/a901559k CASWeb of Science®Google Scholar 9 R. L. Halterman, S.-T. Jan, J. Org. Chem. 1991, 56, 5253. 10.1021/jo00018a008 CASWeb of Science®Google Scholar 10 I. Nägeli, C. Baud, G. Bernardinelli, Y. Jacquier, M. Moran, P. Müller, Helv. Chim. Acta 1997, 80, 1087. 10.1002/hlca.19970800407 CASWeb of Science®Google Scholar 11 Recently, Katsuki and Kohmura reported the [Mn(salen)]-catalyzed asymmetric amidation of allylic and benzylic hydrocarbons with PhI=NTs, which produced amides in up to 89 % ee. See: Y. Kohmura, T. Katsuki, Tetrahedron Lett. 2001, 42, 3339. 10.1016/S0040-4039(01)00427-0 CASWeb of Science®Google Scholar 12 Metal complexes bearing aziridine ligands are rare, very few of which are characterized by X-ray structure determination. See: D. C. Ware, B. G. Siim, K. G. Robinson, W. A. Denny, P. J. Brothers, G. R. Clark, Inorg. Chem. 1991, 30, 3750. 10.1021/ic00019a036 CASWeb of Science®Google Scholar 13 Google Scholar 13a L. M. Trefonas, R. Majeste, J. Heterocycl. Chem. 1965, 2, 80; 10.1002/jhet.5570020114 CASWeb of Science®Google Scholar 13b L. M. Trefonas, T. Sato, J. Heterocycl. Chem. 1966, 3, 404; 10.1002/jhet.5570030402 CASWeb of Science®Google Scholar 13c H. M. Zacharis, L. M. Trefonas, J. Heterocycl. Chem. 1968, 5, 343; 10.1002/jhet.5570050308 CASWeb of Science®Google Scholar 13d H. Zacharis, L. M. Trefonas, J. Heterocycl. Chem. 1970, 7, 755; 10.1002/jhet.5570070401 CASGoogle Scholar 13e H. M. Zacharis, L. M. Trefonas, J. Heterocycl. Chem. 1970, 7, 1301; 10.1002/jhet.5570070611 CASGoogle Scholar 13f J. N. Brown, R. L. R. Towns, L. M. Trefonas, J. Heterocycl. Chem. 1970, 7, 1321; 10.1002/jhet.5570070614 CASGoogle Scholar 13g W. Clegg, S. L. Heath, L. Horsburgh, R. F. W. Jackson, A. Wood, Acta Crystallogr. C 1996, 52, 2779. 10.1107/S0108270196010153 Web of Science®Google Scholar 14 The three-membered aziridine rings of the structurally characterized free aziridines reported in references [13 a–g] feature C−C bond lengths of 1.44–1.53 Å and C−N bond lengths of 1.44–1.57 Å. In each case, the lengths of the two C−N bonds are comparable or almost identical; the C−C−N and C−N−C angles of the ring are all close to 60°. Google Scholar 15 The spectral data of the predominant isomer of 43 are identical with those of α-43 reported in the literature (D. H. R. Barton, R. S. Hay-Motherwell, W. B. Motherwell, J. Chem. Soc. Perkin Trans. 1 1983, 445). The α and β configurations were further confirmed by NOESY measurements. 10.1039/P19830000445 CASWeb of Science®Google Scholar 16 P. Müller, in Advances in Catalytic Processes, Vol. 2, Asymmetric Catalysis ( ), JAI Press, Greenwich, 1997, p. 113. Google Scholar 17 Note that the use of excess PhI=NTs generally resulted in a decrease in enantioseletivity in these aziridination or amidation reactions. We employed such conditions in this work mainly to evaluate the mass balance in the catalytic nitrogen-atom-transfer processes. Google Scholar 18 Metal-complex-catalyzed amidation of steroids is important considering the noteworthy pharmacological activity of amino steroids (see for example: P. H. D. Chenna, P. Dauban, A. Ghini, G. Burton, R. H. Dodd, Tetrahedron Lett. 2000, 41, 7041). Prior to the present work, Breslow and co-workers reported the benzylic amidation of equilenin acetate with PhI=NTs catalyzed by [Mn(tpfpp)Cl] (see ref. [5 e]). 10.1016/S0040-4039(00)01228-4 Web of Science®Google Scholar 19 S.-M. Au, J.-S. Huang, C.-M. Che, W.-Y. Yu, J. Org. Chem. 2000, 65, 7858. 10.1021/jo000881s CASPubMedWeb of Science®Google Scholar 20 PhI(OAc)2 and NH2R are the well-known precursors to iminoiodanes PhI=NR. As we pointed out elsewhere (see references [5f, 19]), the use of “PhI(OAc)2 + NH2R” not only bypasses the preparation of PhI=NR, but also makes it feasible to prepare certain N-substituted amides that are inaccessible by the PhI=NR protocol because the required iminoiodanes are unstable or unknown. Google Scholar 21 Dauban, Dodd, and their co-workers recently reported the asymmetric aziridination of alkenes with “PhI=O + NH2R” (the PhI=O was prepared from PhI(OAc)2). See: P. Dauban, L. Saniere, A. Tarrade, R. H. Dodd, J. Am. Chem. Soc. 2001, 123, 7707. 10.1021/ja010968a CASPubMedWeb of Science®Google Scholar 22 X.-K. Jiang, Acc. Chem. Res. 1997, 30, 283. 10.1021/ar950121h CASWeb of Science®Google Scholar 23 Y. D. Wu, C.-L. Wong, K. W. K. Chan, G.-Z. Ji, X.-K. Jiang, J. Org. Chem. 1996, 61, 746. 10.1021/jo951212v CASPubMedWeb of Science®Google Scholar 24 In this case, a good linearity (R=0.99) was obtained for the log kR versus (σmb, σ) plot (ρmb=−0.79, ρ=0.26). Google Scholar 25 S.-M. Au, W.-H. Fung, J.-S. Huang, K.-K. Cheung, C.-M. Che, Inorg. Chem. 1998, 37, 6564. 10.1021/ic980256u CASPubMedWeb of Science®Google Scholar 26 This was based on the almost identical Ru=O and Os=O bond lengths in the dioxoruthenium(VI) and dioxoosmium(VI) porphyrins [Ru(Por*)(O)2] (Ru=O: ≈1.74(1) Å, see ref. [1h]) and [Os(tpfpp)(O)2] (Os=O: 1.741(2) Å, see ref. [3q]). Google Scholar 27 The larger k2 values for the amidation of ethylbenzenes 27, 28, and 52 by 3 than by [Ru(tpp)(NTs)2] (see Table 7) may be rationalized in a similar manner. However, it is unclear why the amidations of 51 and 53 by 3 are slower than by [Ru(tpp)(NTs)2]. Google Scholar 28 This is in contrast to the isolation of a styrene oxide adduct, [Ru(tdcpp)(CO)(styrene oxide)] (tdcpp=meso-tetrakis(2,6-dichlorophenyl)porphyrinato dianion), from reaction of [Ru(tdcpp)(CO)(MeOH)] with styrene oxide by Groves and co-workers. See: J. T. Groves, Y. Han, D. V. Engen, J. Chem. Soc. Chem. Commun. 1990, 436. 10.1039/c39900000436 CASWeb of Science®Google Scholar 29 Y. Yamada, T. Yamamoto, M. Okawara, Chem. Lett. 1975, 361. 10.1246/cl.1975.361 Web of Science®Google Scholar 30 H. Lindlar, R. Dubuis, Org. Synth. Collect. Vol. 5 1973, 880. Google Scholar 31 A. Robert, B. Loock, M. Momenteau, B. Meunier, Inorg. Chem. 1991, 30, 706. 10.1021/ic00004a021 CASWeb of Science®Google Scholar Citing Literature Volume8, Issue7April 2, 2002Pages 1563-1572 ReferencesRelatedInformation
Referência(s)