Artigo Acesso aberto Revisado por pares

Elongation factor G stabilizes the hybrid-state conformation of the 70S ribosome

2007; Cold Spring Harbor Laboratory Press; Volume: 13; Issue: 9 Linguagem: Inglês

10.1261/rna.601507

ISSN

1469-9001

Autores

Paul Spiegel, Dmitri N. Ermolenko, Harry F. Noller,

Tópico(s)

RNA Research and Splicing

Resumo

Following peptide bond formation, transfer RNAs (tRNAs) and messenger RNA (mRNA) are translocated through the ribosome, a process catalyzed by elongation factor EF-G. Here, we have used a combination of chemical footprinting, peptidyl transferase activity assays, and mRNA toeprinting to monitor the effects of EF-G on the positions of tRNA and mRNA relative to the A, P, and E sites of the ribosome in the presence of GTP, GDP, GDPNP, and fusidic acid. Chemical footprinting experiments show that binding of EF-G in the presence of the non-hydrolyzable GTP analog GDPNP or GDP.fusidic acid induces movement of a deacylated tRNA from the classical P/P state to the hybrid P/E state. Furthermore, stabilization of the hybrid P/E state by EF-G compromises P-site codon-anticodon interaction, causing frame-shifting. A deacylated tRNA bound to the P site and a peptidyl-tRNA in the A site are completely translocated to the E and P sites, respectively, in the presence of EF-G with GTP or GDPNP but not with EF-G.GDP. Unexpectedly, translocation with EF-G.GTP leads to dissociation of deacylated tRNA from the E site, while tRNA remains bound in the presence of EF-G.GDPNP, suggesting that dissociation of tRNA from the E site is promoted by GTP hydrolysis and/or EF-G release. Our results show that binding of EF-G in the presence of GDPNP or GDP.fusidic acid stabilizes the ribosomal intermediate hybrid state, but that complete translocation is supported only by EF-G.GTP or EF-G.GDPNP.

Referência(s)