Artigo Revisado por pares

Diet-to-female and female-to-pup isotopic discrimination in South American sea lions

2015; Wiley; Volume: 29; Issue: 16 Linguagem: Inglês

10.1002/rcm.7249

ISSN

1097-0231

Autores

Massimiliano Drago, Valentina Franco‐Trecu, Luís Cardona, Pablo Inchausti,

Tópico(s)

Cephalopods and Marine Biology

Resumo

Rapid Communications in Mass SpectrometryVolume 29, Issue 16 p. 1513-1520 Research Article Diet-to-female and female-to-pup isotopic discrimination in South American sea lions Massimiliano Drago, Corresponding Author Massimiliano Drago Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, Uruguay Correspondence to: M. Drago, Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, Uruguay. E-mail: [email protected]Search for more papers by this authorValentina Franco-Trecu, Valentina Franco-Trecu Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, Uruguay Proyecto Pinnípedos, Sección Etología, Facultad de Ciencias, Universidad de la República (UdeLaR), C/Iguá 4225, 11400 Montevideo, UruguaySearch for more papers by this authorLuis Cardona, Luis Cardona Department of Animal Biology and Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, SpainSearch for more papers by this authorPablo Inchausti, Pablo Inchausti Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, UruguaySearch for more papers by this author Massimiliano Drago, Corresponding Author Massimiliano Drago Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, Uruguay Correspondence to: M. Drago, Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, Uruguay. E-mail: [email protected]Search for more papers by this authorValentina Franco-Trecu, Valentina Franco-Trecu Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, Uruguay Proyecto Pinnípedos, Sección Etología, Facultad de Ciencias, Universidad de la República (UdeLaR), C/Iguá 4225, 11400 Montevideo, UruguaySearch for more papers by this authorLuis Cardona, Luis Cardona Department of Animal Biology and Biodiversity Research Institute (IRBio), University of Barcelona, Av. Diagonal 643, 08028 Barcelona, SpainSearch for more papers by this authorPablo Inchausti, Pablo Inchausti Department of Ecology & Evolution, Centro Universitario Regional Este (CURE), University of the Republic (UdeLaR), C/Tacuarembó s/n, 20000 Maldonado, UruguaySearch for more papers by this author First published: 14 July 2015 https://doi.org/10.1002/rcm.7249Citations: 14Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Rationale The use of accurate, species-specific diet-tissue discrimination factors is a critical requirement when applying stable isotope mixing models to predict consumer diet composition. Thus, diet-to-female and female-to-pup isotopic discrimination factors in several tissues for both captive and wild South American sea lions were estimated to provide appropriate values for quantifying feeding preferences at different timescales in the wild populations of this species. Methods Stable carbon and nitrogen isotope ratios in the blood components of two female-pup pairs and females' prey muscle from captive individuals were determined by elemental analyzer/isotope ratio mass spectrometry (EA/IRMS) to calculate the respective isotopic discrimination factors. The same analysis was carried out in both blood components, and skin and hair tissues for eight female-pup pairs from wild individuals. Results Mean diet-to-female Δ13C and Δ15N values were higher than the female-to-pup ones. Pup tissues were more 15N-enriched than their mothers but 13C-depleted in serum and plasma tissues. In most of the tissue comparisons, we found differences in both Δ15N and Δ13C values, supporting tissue-specific discrimination. We found no differences between captive and wild female-to-pup discrimination factors either in Δ13C or Δ15N values of blood components. Conclusions Only the stable isotope ratios in pup blood are good proxies of the individual lactating females. Thus, we suggest that blood components are more appropriate to quantify the feeding habits of wild individuals of this species. Furthermore, because female-to-pup discrimination factors for blood components did not differ between captive and wild individuals, we suggest that results for captive experiments can be extrapolated to wild South American sea lion populations. Copyright © 2015 John Wiley & Sons, Ltd. References 1K. Crawford, R. A. McDonald, S. Bearshop. Applications of stable isotope techniques to the ecology of mammals. Mamm. Rev. 2008, 38, 87. 2S. D. Newsome, M. T. Clementz, P. L. Koch. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 2010, 26, 509. 3C. A. Layman, M. S. Araujo, R. Boucek, C. M. Hammerschlag-Peyer, E. Harrison, Z. R. Jud, P. Matich, A. E. Rosenblatt, J. J. Vaudo, L. A. Yeager, D. M. Post, S. Bearhop. Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol. Rev. 2012, 87, 545. 4D. L. Phillips, R. Inger, S. Bearhop, A. L. Jackson, J. W. Moore, A. C. Parnell, B. X. Semmens, E. J. Ward. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 2014, 92, 823. 5A. C. Parnell, R. Inger, S. Bearhop, A. L. Jackson. Source partitioning using stable isotopes: Coping with too much variation. PLoS One 2010, 5, e9672. 6D. L. Phillips. Converting isotope values to diet composition: the use of mixing models. J. Mammal. 2012, 93, 342. 7P. J. W. Olive, J. K. Pinnegar, N. V. C. Polunin, G. Richards, R. Welch. Isotope trophic-step fractionation: a dynamic equilibrium model. J. Anim. Ecol. 2003, 72, 608. 8S. Caut, E. Angulo, F. Courchamp. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J. Appl. Ecol. 2009, 46, 443. 9A. L. Bond, K. A. Hobson. Reporting stable-isotope ratios in ecology: Recommended terminology, guidelines and best practices. Waterbirds 2012, 35, 324. 10K. A. Hobson, R. G. Clark. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. Condor 1992, 94, 189. 11K. A. Hobson, D. M. Schell, D. Renouf, E. Noseworthy. Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: Implications for dietary reconstructions involving marine mammals. Can. J. Fish. Aquat. Sci. 1996, 53, 528. 12S. Ducatez, S. Dalloyau, P. Richard, C. Guinet, Y. Cherel. Stable isotopes document winter trophic ecology and maternal investment of adult female southern elephant seals (Mirounga leonina) breeding at the Kerguelen Islands. Mar. Biol. 2008, 155, 413. 13H. Porras-Peters, D. Aurioles-Gamboa, V. H. Cruz-Escalona, P. L. Koch. Trophic level and overlap of sea lions (Zalophus californianus) in the Gulf of California. Mexico. Mar. Mamm. Sci. 2008, 24, 554. 14S. Habran, C. Debier, D. E. Crocker, D. S. Houser, G. Lepoint, J. M. Bouquegneau, K. Das. Assessment of gestation, lactation and fasting on stable isotope ratios in northern elephant seals (Mirounga angustirostris). Mar. Mamm. Sci. 2010, 26, 880. 15A. D. Lowther, S. D. Goldsworthy. Detecting alternate foraging ecotypes in Australian sea lion (Neophoca cinerea) colonies using stable isotope analysis. Mar. Mamm. Sci. 2011, 27, 567. 16M. Connan, G. J. G. Hofmeyr, M. J. Smale, P. A. Pistorius. Trophic investigations of Cape fur seals at the easternmost extreme of their distribution. Afr. J. Mar. Sci. 2014, 36, 331. 17D. Páez-Rosas, M. Rodríguez-Pérez, M. Riofrío-Lazo. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic Bayesian mixing models in Galapagos pinnipeds. Rapid Commun. Mass Spectrom. 2014, 28, 2550. 18A. M. M. Baylis, B. Page, I. Staniland, J. P. Y. Arnould, J. McKenzie. Taking the sting out of darting: Risks, restraint drugs and procedures for the chemical restraint of Southern Hemisphere otariids. Mar. Mamm. Sci. 2015, 31, 322. 19S. G. Jenkins, S. T. Partridge, T. R. Stephenson, S. D. Farley, C. T. Robbins. Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia 2001, 129, 336. 20H. L. Cappozzo, W. P. Perrin, in Encyclopedia of Marine Mammals, ( 2nd edn.), (Eds: W. F. Perrin, B. Würsing, J. G. M. Thewissen). Academic Press, San Diego, 2009, p. 1076. 21O. T. Oftedal, D. J. Boness, R. A. Tedman, in Current Mammalogy, (Ed: H. H. Genoways). Plenum Publishing Corp., New York, 1987, p. 175. 22M. Drago, L. Cardona, A. Aguilar, E. A. Crespo, S. Ameghino, N. García. Diet of lactating South American sea lions, as inferred from stable isotopes, influences pup growth. Mar. Mamm. Sci. 2010, 26, 309. 23L. A. Hückstädt, C. P. Rojas, T. Antezana. Stable isotope analysis reveals pelagic foraging by the Southern sea lion in central Chile. J. Exp. Mar. Biol. Ecol. 2007, 347, 123. 24M. Drago, L. Cardona, E. A. Crespo, N. García, S. Ameghino, A. Aguilar. Change in the foraging strategy of female South American sea lions (Carnivora: Pinnipedia) after parturition. Sci. Mar. 2010, 74, 589. 25V. Franco-Trecu, M. Drago, F. G. Riet-Sapriza, A. Parnell, R. Frau, P. Inchausti. Bias in diet determination: Incorporating traditional methods in Bayesian mixing models. PLoS One 2013, 8, e80019. 26V. Lesage, M. O. Hammill, K. M. Kovacs. Diet-tissue fractionation of stable carbon and nitrogen isotopes in phocid seals. Mar. Mamm. Sci. 2002, 18, 182. 27K. A. Hobson, R. G. Clark. Turnover of 13C in cellular and plasma fractions of blood: implications for non-destructive sampling in avian dietary studies. Auk 1993, 110, 638. 28G. V. Hilderbrand, S. D. Farley, C. T. Robbins, T. A. Hanley, K. Titus, C. Servheen. Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 1996, 74, 2080. 29E. G. Bligh, W. J. Dyer. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911. 30M. J. DeNiro, S. Epstein. Influence of diet on the distribution of carbon isotopes in animals. Geochim. Cosmochim. Acta 1978, 42, 495. 31M. A. Sotiropoulos, W. M. Tonn, L. I. Wassenaar. Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol. Freshwater Fish 2004, 13, 155. 32C. Ryan, B. McHugh, C. N. Trueman, C. Harrod, S. D. Berrow, I. O'Connor. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 2012, 26, 2745. 33C. M. Kurle. Stable-isotope ratios of blood components from captive northern fur seals (Callorhinus ursinus) and their diet: Applications for studying the foraging ecology of wild otariids. Can. J. Zool. 2002, 80, 902. 34 R Core Team. R Foundation for Statistical Computing. ISBN 3-900051-07-0, Vienna, Austria, 2013. Available: http://www.R-project.org. 35L. Z. Gannes, D. M. O'Brien, C. Martinez del Rio. Stable isotopes in animal ecology: assumption, caveats, and a call for more laboratory experiments. Ecology 1997, 78, 1271. 36C. Martínez del Rio, N. Wolf, S. A. Carleton, L. Z. Gannes. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. 2009, 84, 91. 37L. Zhao, D. M. Schell, M. A. Castellini. Dietary macronutrients influence 13C and 15N signatures of pinnipeds: Captive feeding studies with harbor seals (Phoca vitulina). Comp. Biochem. Physiol. A 2006, 143, 469. 38S. D. Newsome, M. T. Tinker, D. H. Monson, O. Oftedal, K. Ralls, M. L. Fogel, J. A. Estes. Using stable isotopes to investigate individual diet specialization in California sea otters (Enhydra lutris nereis). Ecology 2009, 90, 961. 39L. P. Tyrrell, S. D. Newsome, M. L. Fogel, M. Viens, R. Bowden, M. J. Murray. Vibrissae growth rates and trophic discrimination factors in captive southern sea otters (Enhydra lutris nereis). J. Mammal. 2013, 94, 331. 40S. Bearhop, S. Waldron, S. C. Votier, R. W. Furness. Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Physiol. Biochem. Zool. 2002, 75, 451. 41L. S. Arneson, S. E. MacAvoy. Carbon, nitrogen, and sulfur diet–tissue discrimination in mouse tissues. Can. J. Zool. 2005, 83, 989. 42V. Franco-Trecu, D. Aurioles-Gamboa, M. Arim, M. Lima. Prepartum and postpartum trophic segregation between sympatrically breeding female Arctocephalus australis and Otaria flavescens. J. Mammal. 2012, 93, 514. 43M. Riedman. The Pinnipeds: Seals, Sea Lions, and Walruses. University of California Press, Berkeley, 1990. 44N. E. Hussey, M. A. MacNeil, B. C. McMeans, J. A. Olin, S. F. J. Dudley, G. Cliff, S. P. Wintner, S. T. Fennessy, A. T. Fisk. Rescaling the trophic structure of marine food webs. Ecol. Lett. 2014, 17, 239. Citing Literature Volume29, Issue1630 August 2015Pages 1513-1520 ReferencesRelatedInformation

Referência(s)