Artigo Revisado por pares

Repeatability of Foreign Egg Rejection: Testing the Assumptions of Co-Evolutionary Theory

2011; Wiley; Volume: 117; Issue: 7 Linguagem: Inglês

10.1111/j.1439-0310.2011.01917.x

ISSN

1439-0310

Autores

Peter Samaš, Márk E. Hauber, Phillip Cassey, Tomáš Grim,

Tópico(s)

Avian ecology and behavior

Resumo

EthologyVolume 117, Issue 7 p. 606-619 Repeatability of Foreign Egg Rejection: Testing the Assumptions of Co-Evolutionary Theory Peter Samaš, Peter Samaš Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc, Czech RepublicSearch for more papers by this authorMark E. Hauber, Mark E. Hauber Department of Psychology, Hunter College of the City University of New York, New York, NY, USASearch for more papers by this authorPhillip Cassey, Phillip Cassey School of Earth and Environmental Sciences, University of Adelaide, Adelaide, AustraliaSearch for more papers by this authorTomáš Grim, Tomáš Grim Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc, Czech RepublicSearch for more papers by this author Peter Samaš, Peter Samaš Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc, Czech RepublicSearch for more papers by this authorMark E. Hauber, Mark E. Hauber Department of Psychology, Hunter College of the City University of New York, New York, NY, USASearch for more papers by this authorPhillip Cassey, Phillip Cassey School of Earth and Environmental Sciences, University of Adelaide, Adelaide, AustraliaSearch for more papers by this authorTomáš Grim, Tomáš Grim Department of Zoology and Laboratory of Ornithology, Palacký University, Olomouc, Czech RepublicSearch for more papers by this author First published: 12 June 2011 https://doi.org/10.1111/j.1439-0310.2011.01917.xCitations: 48 Tomáš Grim, Department of Zoology and Laboratory of Ornithology, Palacký University, tř. Svobody 26, CZ-771 46 Olomouc, Czech Republic.E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Most theoretical models of coevolution between brood parasites, whether interspecific or conspecific, and their hosts explicitly assume consistent individual behaviour in host egg-rejection responses. Accordingly, hosts cast as acceptors always accept, whereas ejectors always reject parasitic eggs when exposed to stable ecological conditions. To date, only few studies have attempted to test this critical assumption of individual repeatability in egg-rejection responses of hosts. Here, we studied the repeatability of egg rejection in blackbirds (Turdus merula) and song thrush (T. philomelos), species in which females are reported to reject simulated, non-mimetic foreign eggs at intermediate frequencies at the population level. However, intermediate rates of acceptance and rejection can be consistent with either or both intra- and interindividual variability in rejection behaviours. Our experiments revealed generally high individual consistency in these hosts' responses to experimentally introduced non-mimetic and mimetic model foreign eggs. Individuals also responded faster on average to second than to first trials within the same breeding attempts, but the difference was statistically significant only in blackbirds. These results are consistent with the critical assumption of co-evolutionary models, that statistically egg rejection is mostly individually repeatable, but also reveal that some individuals in both species change their responses even within the short time-window of one breeding attempt. The data suggest that individuals reject foreign eggs faster when perceived parasitism risk is greater because of repeated introductions of experimental parasitic eggs. We provide methodological recommendations to facilitate experimental and meta-analytical studies of individual egg rejection repeatability and discuss how to reduce technical constraints arising from disparate treatments and variable sample sizes for future studies. Literature Cited Alvarez, F. 1996: Model cuckoo Cuculus canorus eggs accepted by rufous bush chats Cercotrichas galactotes during the parasite's absence from the breeding area. Ibis 138, 340—342. Amundsen, T., Bobakken, B. T., Moksnes, A. & Røskaft, E. 2002: Rejection of common cuckoo Cuculus canorus eggs in relation to female age in the bluethroat Luscinia svecica. J. Avian Biol. 33, 366—370. Antonov, A., Stokke, B. G., Vikan, J. R., Fossøy, F., Ranke, P. S., Røskaft, E., Moksnes, A., Møller, A. P. & Shykoff, J. A. 2010: Egg phenotype differentiation in sympatric cuckoo Cuculus canorus gentes. J. Evol. Biol. 23, 1170—1182. Bates, D., Maechler, M. & Dai, B. 2008: lme4:linear mixed-effects models using S4 classes. R package version 0.999375-28. [Online.] Available at http://lme4.r-forge.r-project.org/. Bell, A. M., Hankison, S. J. & Laskowski, K. L. 2009: The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771—783. Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H. & White, J. S. S. 2009: Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127—135. Burnham, K. P. & Anderson, D. R. 2002: Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach. Springer Verlag, New York. Cassey, P., Honza, M., Grim, T. & Hauber, M. E. 2008: The modelling of avian visual perception predicts behavioural rejection responses to variable egg colours. Biol. Lett. 4, 515—517. Cassey, P., Ewen, J. G., Marshall, N. J., Vorobyev, M., Blackburn, T. M. & Hauber, M. E. 2009: Are avian eggshell colours effective intraspecific communication signals in the Muscicapoidea? A perceptual modelling approach. Ibis 151, 689—698. Cramp, S. 1985: The Birds of the Western Palearctic. Volume IV (Terns to Woodpeckers). Oxford Univ. Press, Oxford, UK. Cramp, S. 1988: The Birds of the Western Palearctic. Volume V (Tyrant Flycatchers to Thrushes). Oxford Univ. Press, Oxford, UK. Cytel Inc. 2005: StatXact 7. Statistical Software for Exact Nonparametric Inference. Cytel Inc., Cambridge, USA. Davies, N. B. 2000: Cuckoos, Cowbirds and Other Cheats. T & AD Poyser, London, UK. Davies, N. B. & Brooke, M. L. 1989: An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts I. Host egg discrimination. J. Anim. Ecol. 58, 207—224. Davies, N. B., Brooke, M. L. & Kacelnik, A. 1996: Recognition errors and probability of parasitism determine whether reed warblers should accept or reject mimetic cuckoo eggs. Proc. R. Soc. B 263, 925—931. Gibbs, H. L., Sorenson, M. D., Marchetti, K., Brooke, M. L., Davies, N. B. & Nakamura, H. 2000: Genetic evidence for female host-specific races of the common cuckoo. Nature 407, 183—186. Grim, T. 2005: Mimicry vs. similarity: which resemblances between brood parasites and their hosts are mimetic and which are not? Biol. J. Lin. Soc. 84, 69—78. Grim, T. & Honza, M. 2001: Differences in behaviour of closely related thrushes (Turdus philomelos and T. merula) to experimental parasitism by the common cuckoo Cuculus canorus. Biologia 56, 549—556. Grim, T., Rutila, J., Cassey, P. & Hauber, M. E. 2009a: Experimentally constrained virulence is costly for common cuckoo chicks. Ethology 115, 14—22. Grim, T., Rutila, J., Cassey, P. & Hauber, M. E. 2009b: The cost of virulence: an experimental study of egg eviction by brood parasitic chicks. Behav. Ecol. 20, 1138—1146. Grim, T., Samaš, P., Moskát, C., Kleven, O., Honza, M., Moksnes, A., Røskaft, E. & Stokke, B. G. 2011: Constraints on host choice: why do parasitic birds rarely exploit some common potential hosts? J. Anim. Ecol. 80, 508—518. Guo, G. & Zhao, H. 2000: Multilevel modelling for binary data. Annu. Rev. Sociol. 26, 441—462. Hale, K. & Briskie, J. V. 2007: Response of introduced European birds in New Zealand to experimental brood parasitism. J. Avian Biol. 38, 198—204. Hauber, M. E. 2003: Interspecific brood parasitism and the evolution of host clutch sizes. Evol. Ecol. Res. 5, 559—570. Hauber, M. E. & Moskát, C. 2008: Shared parental care is costly for nestlings of common cuckoos and their great reed warbler hosts. Behav. Ecol. 19, 79—86. Hauber, M. E., Yeh, P. J. & Roberts, J. O. L. 2004: Patterns and coevolutionary consequences of repeated brood parasitism. Proc. R. Soc. B 271, S317—S320. Hauber, M. E., Moskát, C. & Bán, M. 2006: Experimental shift in hosts' acceptance threshold of inaccurate-mimic brood parasite eggs. Biol. Lett. 2, 177—180. Higgins, P. J. 2006: Handbook of Australian, New Zealand and Antarctic Birds. Vol. 7B (Boatbill to Starlings). Oxford Univ. Press, Melbourne, Australia. Honza, M., Polačiková, L. & Procházka, P. 2007a: Ultraviolet and green parts of the colour spectrum affect egg rejection in the song thrush (Turdus philomelos). Biol. J. Linn. Soc. 92, 269—276. Honza, M., Požgayová, M., Procházka, P. & Tkadlec, M. 2007b: Consistency in egg rejection behaviour: responses to repeated brood parasitism in the blackcap (Sylvia atricapilla). Ethology 113, 344—351. Hoover, J. P. & Hauber, M. E. 2007: Individual patterns of habitat and nest-site use by hosts promote transgenerational transmission of avian brood parasitism status. J. Anim. Ecol. 76, 1208—1214. Hoover, J. P., Yasukawa, K. & Hauber, M. E. 2006: Spatially and temporally structured avian brood parasitism affects the fitness benefits of hosts' rejection strategies. Anim. Behav. 72, 881—890. Jackson, W. M. 1998: Egg discrimination and egg-color variability in the northern masked weaver: the importance of conspecific versus interspecific parasitism. In: Parasitic Birds and Their Hosts ( S. I. Rothstein & S. K. Robinson, eds). Oxford Univ. Press, New York, pp. 407—416. Johnson, D. H. 2002: The importance of replication in wildlife research. J. Wildl. Manag. 66, 919—932. Langmore, N. E., Kilner, R. M., Butchart, S. H. M., Maurer, G., Davies, N. B., Cockburn, A., Macgregor, N. A., Peters, A., Magrath, M. J. L. & Dowling, D. K. 2005: The evolution of egg rejection by cuckoo hosts in Australia and Europe. Behav. Ecol. 16, 686—692. Lawes, M. J. & Marthews, T. R. 2003: When will rejection of parasite nestlings by hosts on non-evicting avian brood parasites be favored? A misimprinting-equilibrium model. Behav. Ecol. 14, 757—770. Lessells, C. M. & Boag, P. T. 1987: Unrepeatable repeatabilities: a common mistake. Auk 104, 116—121. López-de-Hierro, M. D. G. & Moreno-Rueda, G. 2010: Egg-spot pattern rather than egg colour affects conspecific egg rejection in the house sparrow (Passer domesticus). Behav. Ecol. Sociobiol. 64, 317—324. Lotem, A. 1993: Learning to recognize nestlings is maladaptive for cuckoo Cuculus canorus hosts. Nature 362, 743—745. Lotem, A., Nakamura, H. & Zahavi, A. 1995: Constraints on egg discrimination and cuckoo-host co-evolution. Anim. Behav. 49, 1185—1209. Lyon, B. E. 2003: Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature 422, 495—499. Martin, P. & Bateson, P. 2008: Measuring Behaviour. Cambridge Univ. Press, Cambridge, UK. May, R. M., Nee, S. & Watts, C. 1991: Could intraspecific brood parasitism cause population cycles? Proc. Int. Ornithol. Congr. 20, 1012—1022. McGraw, K. O. & Wong, S. P. 1996: Forming inferences about some intraclass correlation coefficients. Psychol. Methods 1, 30—46. Moksnes, A. & Røskaft, E. 1995: Egg-morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. J. Zool. 236, 625—648. Moksnes, A., Røskaft, E., Braa, A. T., Korsnes, L., Lampe, H. M. & Pedersen, H. C. 1991: Behavioural responses of potential hosts towards artificial cuckoo eggs and dummies. Behaviour 116, 64—89. Moskát, C. & Hauber, M. E. 2007: Conflict between egg recognition and egg rejection decisions in common cuckoo (Cuculus canorus) hosts. Anim. Cogn. 10, 377—386. Moskát, C. & Hauber, M. E. 2010: Chick loss from mixed broods reflects severe nestmate competition between an evictor brood parasite and its hosts. Behav. Process 83, 311—314. Moskát, C., Karcza, Z. & Csörgö, T. 2003: Egg rejection in European blackbirds (Turdus merula): the effect of mimicry. Ornis Fennica 80, 86—91. Moskát, C., Bán, M., Székely, T., Komdeur, T., Lucassen, R. W. G., van Boheemen, L. & Hauber, M. E. 2010: Discordancy or learning? Dissecting the cognitive basis of the recognition of foreign eggs in hosts of avian brood parasites. J. Exp. Biol. 213, 1976—1983. Nakagawa, S. & Hauber, M. E. 2011: Great challenges with few subjects: Statistical strategies for neuroscientists. Neurosci. Biobehav. Rev. 35, 462—473. Nakagawa, S. & Schielzeth, H. 2010: Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935—956. Nee, S. & May, R. M. 1993: Population-level consequences of conspecific brood parasitism in birds and insects. J. Theor. Biol. 161, 95—109. Palomino, J. J., Martín-Vivaldi, M., Soler, M. & Soler, J. J. 1998: Females are responsible for ejection of cuckoo eggs in the rufous bush robin. Anim. Behav. 56, 131—136. Peer, B. D. & Rothstein, S. I. 2010: Phenotypic plasticity in common grackles (Quiscalus quiscula) in response to repeated brood parasitism. Auk 127, 293—299. Polačiková, L. & Grim, T. 2010: Blunt egg pole holds cues for alien egg discrimination: experimental evidence. J. Avian Biol. 41, 111—116. Polačiková, L., Stokke, B. G., Procházka, P., Honza, M., Moksnes, A. & Røskaft, E. 2010: The role of blunt egg pole characteristics for recognition of eggs in the song thrush (Turdus philomelos). Behaviour 147, 465—478. R Development Core Team. 2010: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Online] Available at: http://www.R-project.org. Reeve, H. K. 1989: The evolution of conspecific acceptance thresholds. Am. Nat. 133, 407—435. Riehl, C. 2010: A simple rule reduces costs of extragroup parasitism in a communally breeding bird. Curr. Biol. 20, 1830—1833. Rodríguez-Gironés, M. A. & Lotem, A. 1999: How to detect a cuckoo egg: a signal-detection theory model for recognition and learning. Am. Nat. 153, 633—648. Røskaft, E., Moksnes, A., Meilvang, D., Bičík, V., Jemelíková, J. & Honza, M. 2002: No evidence for recognition errors in Acrocephalus warblers. J. Avian Biol. 33, 31—38. Ruxton, G. D. & Broom, M. 2002: Intraspecific brood parasitism can increase the number of eggs that an individual lays in its own nest. Proc. R. Soc. B 269, 1989—1992. Ruxton, G. D., Broom, M. & Colegrave, N. 2001: Are unusually colored eggs a signal to potential conspecific brood parasites? Am. Nat. 157, 451—458. Servedio, M. R. & Hauber, M. E. 2006: To eject or to abandon? Life history traits of hosts and parasites interact to influence the fitness payoffs of alternative anti-parasite strategies. J. Evolution. Biol. 19, 1585—1594. Servedio, M. R. & Lande, R. 2003: Coevolution of an avian host and its parasitic cuckoo. Evolution 57, 1164—1175. Shaw, R. C. & Hauber, M. E. 2009: Experimental support for the role of nest predation in the evolution of brood parasitism. J. Evolution. Biol. 22, 1354—1358. Shizuka, D. & Lyon, B. E. 2010: Coots use hatch order to learn to recognize and reject conspecific brood parasitic chicks. Nature 463, 223—226. Siikamäki, P. 1995: Are large clutches costly to incubate – the case of pied flycatcher. J. Avian Biol. 26, 76—80. Soler, M., Palomino, J. J., Martín-Vivaldi, M. & Soler, J. J. 2000: Lack of consistency in the response of rufous-tailed scrub robins Cercotrichas galactotes. Ibis 142, 151—154. Soler, M., Martín-Vivaldi, M. & Perez-Contreras, T. 2002: Identification of the sex responsible for recognition and the method of ejection of parasitic eggs in some potential common cuckoo hosts. Ethology 108, 1093—1101. Stokke, B. G., Takasu, F., Moksnes, A. & Røskaft, E. 2007: The importance of clutch characteristics and learning for antiparasite adaptations in hosts of avian brood parasites. Evolution 61, 2212—2228. Taborsky, M. 2010: Sample size in the study of behaviour. Ethology 116, 185—202. Takasu, F. 1998: Why do all host species not show defense against avian brood parasitism: evolutionary lag or equilibrium? Am. Nat. 151, 193—205. Takasu, F. 2004: How many eggs should be laid in one's own nest and others' in intra-specific brood parasitism? Popul. Ecol. 46, 221—229. Thomson, G. M. 1922: The Naturalisation of Plants and Animals in New Zealand. Cambridge Univ. Press, Cambridge, UK. Vikan, J. R., Stokke, B. G., Fossøy, F., Jackson, C., Huhta, E., Rutila, J., Moksnes, A. & Røskaft, E. 2009: Fixed rejection responses to single and multiple experimental parasitism in two Fringilla hosts of the common cuckoo. Ethology 115, 840—850. Vikan, J. R., Stokke, B. G., Rutila, J., Huhta, E., Moksnes, A. & Røskaft, E. 2010: Evolution of defences against cuckoo (Cuculus canorus) parasitism in bramblings (Fringilla montifringilla): a comparison of four populations in Fennoscandia. Evol. Ecol. 24, 1141—1157. Weidinger, K. & Kočvara, R. 2010: Repeatability of nest predation in passerines depends on predator species and time scale. Oikos 119, 138—146. Yamauchi, A. 1993: Theory of intraspecific nest parasitism in birds. Anim. Behav. 46, 335—345. Yamauchi, A. 1995: Theory of evolution of nest parasitism in birds. Am. Nat. 145, 434—456. Citing Literature Volume117, Issue7July 2011Pages 606-619 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX