Environmental Factors Influencing Macrophytes Assemblages in a Middle-Sized Mediterranean Stream
2015; Wiley; Volume: 32; Issue: 4 Linguagem: Inglês
10.1002/rra.2878
ISSN1535-1467
AutoresParaskevi Manolaki, Eva Papastergiadou,
Tópico(s)Hydrology and Sediment Transport Processes
ResumoRiver Research and ApplicationsVolume 32, Issue 4 p. 639-651 Research Article Environmental Factors Influencing Macrophytes Assemblages in a Middle-Sized Mediterranean Stream P. Manolaki, P. Manolaki Department of Biology, University of Patras, Patras, GreeceSearch for more papers by this authorE. Papastergiadou, Corresponding Author E. Papastergiadou Department of Biology, University of Patras, Patras, Greece Correspondence to: E. Papastergiadou, Department of Biology, University of Patras, Patras, Greece. E-mail: [email protected]Search for more papers by this author P. Manolaki, P. Manolaki Department of Biology, University of Patras, Patras, GreeceSearch for more papers by this authorE. Papastergiadou, Corresponding Author E. Papastergiadou Department of Biology, University of Patras, Patras, Greece Correspondence to: E. Papastergiadou, Department of Biology, University of Patras, Patras, Greece. E-mail: [email protected]Search for more papers by this author First published: 19 February 2015 https://doi.org/10.1002/rra.2878Citations: 11Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The occurrence of aquatic plants was analysed in a medium-sized river in Greece. There were three objectives. The first was to examine the macrophyte assemblage structure along the river. The identification and hierarchical structure of aquatic plant assemblages were analyzed using Bray–Curtis analysis. Taxa primarily responsible for the differences among the assemblages were identified using similarity percentage analysis. The second objective was to investigate whether habitat features have greater impact on aquatic plant assemblages than chemical parameters. Partial canonical correspondence analysis was used for partitioning the total variation of the biological response. The third objective was to further explore the relationships between hydrophytes (water-supported plants) richness and water quality using linear regression model. The results showed that from the 86 macrophyte taxa recorded, the 25 were found to be primarily responsible for the differences among the macrophytic assemblages. Both geomorphological and physicochemical variables proved to be significant in the Monte Carlo permutation test. The 14 out of 19 geomorphological variables were statistically significant (p<0.004) and included in the final canonical correspondence analysis model. From physicochemical variables, temperature, conductivity and water velocity were significant predictors of species distribution. Total macrophyte variation was divided into portions: (i) explained exclusively by geomorphological variables (34%); (ii) explained exclusively by physicochemical variables (3%); (iii) explained by both variables (52%); and (iv) unexplained (4%). Partitioning clearly revealed that macrophyte assemblage structure was strongly associated with geomorphological features. Τhe results indicated that hardness, DO and chl-a play a more prominent role in hydrophyte species richness at community level. Copyright © 2015 John Wiley & Sons, Ltd. References Abou-Hamdan H, Haury J, Hebrard JP, Dandelot S, Cazaubon A. 2005. Macrophytic communities inhabiting the Huveaune (South-East France), a river subject to natural and anthropic disturbances. Hydrobiologia 551: 161– 170. Aguiar FC, Segurado P, Urbanič G, Cambra J, Chauvin C, Ciadamidaro S, Dörflinger G, Ferreira J, Germ M, Manolaki P, Minciardi MR, Munné A, Papastergiadou E, Ferreira MT. 2014. Comparability of river quality assessment using macrophytes: a multi-step procedure to overcome biogeographical differences. Science of the Total Environment 476–477: 757– 767 Almeida-Neto M, Ulrich W. 2011. A straightforward computational approach for measuring nestedness using quantitative matrices. Environmental Modeling and Software 26: 173– 178. APHA. 2001. Supplement to Standard Methods for the Examination of Water and Wastewater, 20th edn. APHA, American Water Works Association, and Water Pollution Control Federation: Washington, DC. Baattrup-Pedersen A, Riis T. 1999. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshwater Biology 42: 375– 385. Baattrup-Pedersen A, Szoszkiewicz K, Nijboer R, O'Hare M, Ferreira T. 2006. Macrophyte communities in unimpacted European streams: variability in assemblage patterns, abundance and diversity. Hydrobiologia 566: 179– 196. Bolpagni R, Bartoli M, Viaroli P. 2013. Species and functional plant diversity in a heavily impacted riverscape: implications for threatened hydro-hygrophilous flora conservation. Limnologica -Ecology and Management of Inland Waters 43: 230– 238. Cabecinha E, Cortes R, Pardal MÂ, Cabral JA. 2009. A Stochastic Dynamic Methodology (StDM) for reservoir's water quality management: validation of a multi-scale approach in a south European basin (Douro, Portugal). Ecological Indicators 9: 329– 345. Cabin RJ, Mitchell RJ. 2000. To Bonferroni or not to Bonferroni: when and how are the questions. Bulletin of the Ecological Society of America 81: 246– 248. Clarke KR. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117– 143. EN 14184. 2003. Water Quality — Guidance for the Surveying of Aquatic Macrophytes in Running Waters. CEN: Brussels; 2003. Feio MJ, Aguiar FC, Almeida SFP, Ferreira J, Ferreira MT, Elias C, Serra SRQ, Buffagni A, Cambra J, Chauvin C, Delmas F, Dörflinger G, Erba S, Flor N, Ferréol M, Germ M, Mancini L, Manolaki P, Marcheggiani S, Minciardi MR, Munné A, Papastergiadou E, Prat N, Puccinelli C, Rosebery J, Sabater S, Ciadamidaro S, Tornés E, Tziortzis I, Urbanič G, Vieira C. 2014. Least disturbed condition for European Mediterranean rivers. The Science of the Total Environment 476–477: 745– 756. Ferreira MT, Albuquerque A, Aguiar FC, Sidorkewicz N. 2002. Assessing reference sites and ecological quality of river plant assemblages from an Iberian basin using a multivariate approach. Archiv für Hydrobiologie 155: 121– 145. Ferreira MT, Catarino L, Moreira I. 1998. Aquatic weed assemblages in an Iberian drainage channel system and related environmental factors. Weed Research 38: 291– 300. Ferreiro N, Feijoó C, Giorgi A, Leggieri L. 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in a Pampean stream. Hydrobiologia 664: 199– 211. Fritz R, Strohmeier S, Tremp H. 1997. Submerse Makrophyten der südlichen badischen Oberrheinauen - Verbreitung, Ökologie, Bioindikation. Tagungsbericht der DGL, Schwedt, Kredfeld: 465– 469. Furse M, Hering D, Moog O, Verdonschot P, Johnson RK, Brabec K, Gritzalis K, Buffagni A, Pinto P, Friberg N, Murray-Bligh J, Kokes V, Alber R, Usseglio-Polatera V, Haase P, Sweeting R, Bis B, Szoszkiewich K, Soszka H, Springe G, Sporka F, Krno I. 2006. The STAR project: context, objectives and approaches. Hydrobiologia 566: 3– 29. Gasith A, Resh H. 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. The Annual Review of Ecology, Evolution, and Systematics 30: 51– 81. Grinberga L. 2010. Environmental factors influencing the species diversity of macrophytes in middle-sized streams in Latvia. Hydrobiologia 656: 233– 241. Gurnell AM, Bertoldi W, Corenblit D. 2012. Changing river channels: the roles of hydrological processes, plants and pioneer fluvial landforms in humid temperate, mixed load, gravel bed rivers. Earth-Science Reviews 111: 129– 141. Haslam SM. 1978. River Plants. The Macrophytic Vegetation of Water Courses. Cambridge Univ. Press: London, New York, Melbourne; 396. Haslam SM. 2006. River Plants. The Macrophytic Vegetation of Water Courses. Cambridge 2nd edn. Forest Text publication: Swn y Nant, Tresaith, Cardigan, Ceredigion, UK; 438. Haury J. 1988. Macrophytes du Trieux (Bretagne-Nord): les ensembles floristiques. Bulletin de la Société de Sciences Naturelles de l' Ouest de la France 10: 135– 150. Holmes NTH, Boon PJ, Rowell TA. 1998. A revised classification system for British rivers based on their aquatic plant communities. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 555– 578. Holmes NTH, Newman JR, Chadd S, Rouen KJ, Saint L, Dawson FH. 1999. Mean trophic rank: a user's manual. R&D Technical Report E38, Environment Agency, Bristol. Holmes NTH, Whitton BA. 1975. Submerged bryophytes and angiosperms of the river tweed and its tributaries. Transactions of the Botanical Society Edinburgh 52: 389– 395. Hrivnák R, Ot'ahel'ová H, Valachovič M. 2007. The relationship between macrophyte vegetation and habitat factors along a middle-size European river. Polish Journal of Ecology 55: 717– 729. Janauer GA, Pall K. 1999. Makrophytenvegetation. In: Gießgang Greifenstein. Aquatische und terrestrische Vegetation. Schriftenreihe der Forschung im Verbund 53: 10– 97. Janauer GA. 1979. Die Makrophytenvegetation der Fischa. Internationale Arbeitsgemeinschaft Donauforschung der Societas Internationalis Limnologiae (SIL), 21: Arbeitstagung; 46– 49. Kleeberg A, Köhler J, Sukhodolova T, Sukhodolov A. 2010. Effects of aquatic macrophytes on organic matter deposition, resuspension and phosphorus entrainment in a lowland river. Freshwater Biology 55: 326– 345. Kohler A, Vollrath H, Beisl E. 1971. Zur Verbreitung, Vergesellschaftung und Ökologie der Gefäßmakrophyten im Fließwassersystem Moosach (Münchner Ebene). Archiv für Hydrobiologie 69: 333– 364. Kohler A. 1978. Methoden der Kartierung von Flora und Vegetation von Süßwasser- biotopen. Landschaft u. Stadt 10: 73– 85. Lance GN, Williams WT. 1967. A general theory of classificatory sorting strategies 1. Hierarchical systems. The Computer Journal 9: 373– 380. Lytle DA, Poff NL. 2004. Adaptation to natural flow regimes. Trends in Ecology & Evolution 19: 94– 100. Manolaki P, Papastergiadou E. 2013. The impact of environmental factors on the distribution pattern of aquatic macrophytes in a middle-sized Mediterranean stream. Aquatic Botany 104: 34– 46. Manolaki P, Tsakiri E, Papastergiadou E. 2011. Inventory of aquatic and riparian flora of Acheron and Louros rivers, and Zirou lake in Western Greece. Fresenius Environmental Bulletin 20: 861– 874. McCune B, Grace JB. 2002. Analysis of Ecological Communities. MjM Software: Gleneden Beach, Oregon. Millennium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Synthesis. Island Press: Washington DC. Munné A, Prat N. 2011. Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecological Indicators 11: 651– 662. O'Hare MT, Baattrup-Pedersen A, Nijboer R, Szoszkiewicz K, Ferreira T. 2006. Macrophyte communities of European streams with altered physical habitat. Hydrobiologia, 566: 197– 210. Oťaheľová H, Valachovic M, Hrivnák R. 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica - Ecology and Management of Inland Waters 37: 290– 302. Raven PJ, Holmes NTH, Vaughan IP, Dawson FH, Scarlett P. 2010. Benchmarking habitat quality: observations using River Habitat Survey on near-natural streams and rivers in northern and western Europe. Aquatic Conservation: Marine and Freshwater Ecosystems 20: S13– S30. Riis T, Biggs BJF. 2003. Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography 48: 1488– 1497. Riis T, Sand-Jensen K, Vestergaard O. 2000. Plant communities in lowland Danish streams: species composition and environmental factors. Aquatic Botany 66: 255– 272. Riis T, Suren AM, Clausen B, Sand-Jensen K. 2008. Vegetation and flow regime in lowland streams. Freshwater Biology 53: 1531– 1543. Riis T. 2008. Dispersal and colonization of plants in lowland streams: success rates and bottlenecks. Hydrobiologia 596: 341– 351. Santamaría L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137– 154. Santos MJ. 2010. Encroachment of upland Mediterranean plant species in riparian ecosystems of southern Portugal. Biodiversity and Conservation 19: 2667– 2684. Schäfer-Guignier O. 1994. Weiher in der Franche-Comté: eine floristisch-ökologische und vegetationskundliche Untersuchung. In: CRAMER, J. (Ed.), Dissertationes Botanicae 213: 1, 239 pp. Sculthorpe CD. 1967. The Biology of Aquatic Vascular Plants. Edward Arnold: London. Sipos V, Kohler A, Björk S. 1999. Makrophyten-Verbreitung und Standorte im eutrophen Björka-Fluß (Südschweden, Skane). Tagungsband der 31. Umwelttagung, Univ. Hohenheim. Šraj-Kržič N, Germ M, Urbanc-Berčič O, Kuhar U, Janauer GA, Gaberščik A. 2007. The quality of the aquatic environment and macrophytes of karstic watercourses. Plant Ecology 192: 107– 118. Stanković I, Vlahović T, Gligora M, Udovič Várbíró G, Borics G. 2012. Phytoplankton functional and morphofunctional approach in large floodplain rivers. Hydrobiologia 698: 217– 231. Szoszkiewicz K, Ferreira T, Korte T, Baattrup-Pedersen A, Davy-Bowker J, O'Hare M. 2006. European river plant communities: the importance of organic pollution and the usefulness of existing macrophyte metrics. Hydrobiologia 566: 211– 234. Szoszkiewicz K, Jusik S, Lawniczak AE, Zgola T. 2010. Macrophyte development in unimpacted lowland rivers in Poland. Hydrobiologia 656: 117– 131. Tansley AG. 1911. Types of British Vegetation. Cambridge University Press: Cambridge; 1911. Thiébaut G. 2006. Aquatic macrophyte approach to assess the impact of disturbances on the diversity of the ecosystem and on river quality. International Review of Hydrobiology 91: 483– 497. Tremolieres M, Roeck U, Klein JP. 1994. The exchange process between river and groundwater on the central Alsace floodplain (Eastern France): II. The case of a river with functional floodplain. Hydrobiologia 273: 19– 36. Veith U, Zeltner GH, Kohler A. 1998. Die Makrophyten-Vegetation des Fließgewässersystems der Friedberger Au (bei Augsburg). Ihre Entwicklung und Veränderung von 1972 bis 1996. Ber. Inst. Landschafts- Pflanzenökologie, Univ. Stuttgart, 4: 7–241. Willby NJ, Abernethy VJ, Demars BOL. 2000. Attribute-based classification of European hydrophytes and its relationship to habitat utilization. Freshwater Biology 43: 43– 74. Citing Literature Supporting Information Filename Description rra2878-sup-0001-Appendix.tifapplication/unknown, 8.8 MB Supporting info item Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. Volume32, Issue4May 2016Pages 639-651 ReferencesRelatedInformation
Referência(s)