Artigo Revisado por pares

Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts

2014; American Institute of Aeronautics and Astronautics; Volume: 30; Issue: 5 Linguagem: Inglês

10.2514/1.b34802

ISSN

1533-3876

Autores

Frank Lu, Eric Braun,

Tópico(s)

Risk and Safety Analysis

Resumo

No AccessSurvey PaperRotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine ConceptsFrank K. Lu and Eric M. BraunFrank K. LuUniversity of Texas at Arlington, Arlington, Texas 76019 and Eric M. BraunUniversity of Texas at Arlington, Arlington, Texas 76019Published Online:12 Sep 2014https://doi.org/10.2514/1.B34802SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Humphrey H. A., “An Internal-Combustion Pump, and Other Applications of a New Principle,” Proceedings of the Institution of Mechanical Engineers, Vol. 77, No. 1, 1909, pp. 1075–1200. doi:https://doi.org/10.1243/PIME_PROC_1909_077_019_02 CrossrefGoogle Scholar[2] Millar W. J. (ed.), “Miscellaneous Scientific Papers by W. J. MacQuorn Rankine,” Charles Griffin, London, 1881, pp. 464–470. Google Scholar[3] Rankine W. J. M., “On the Thermodynamic Theory of Finite Longitudinal Disturbance,” Philosophical Transactions of the Royal Society of London, Vol. 160, Jan. 1870, pp. 277–288. doi:https://doi.org/10.1098/rstl.1870.0015 PTRSAV 0370-2316 CrossrefGoogle Scholar[4] Hugoniot P.-H., “Mémoire sur la Propagation du Movement dans les Corps et Plus Spécialement Dans les Gaz Parfaits. Premiere Partie,” Journal de l’École Polytechnique, Vol. 57, 1887, pp. 3–97. Google Scholar[5] Chapman D. L., “On the Rate of Explosion in Gases,” Philosophical Magazine Series 5, Vol. 47, No. 284, 1889, pp. 90–104. doi:https://doi.org/10.1080/14786449908621243 CrossrefGoogle Scholar[6] Jouguet E., “Sur la Propagation des Réactions Chimiques dans les Gaz,” Journal des Mathématiques Pures et Appliquées, Vols. 1–2, 1905, pp. 347–425, 5–86. Google Scholar[7] Vieille P., “Déformation des Ondes au Cours de Leur Propagation,” Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Vol. 128, 1899, pp. 1437–1440. Google Scholar[8] Verne J., De la Terre à la Lune, Pierre-Jules Hetzel, Paris, 1865. Google Scholar[9] Battey S. B., “Aerial Machine,” U.S. Patent No. 502,168, filed 25 July 1893. Google Scholar[10] Back L. H., “Application of Blast Wave Theory to Explosive Propulsion,” Acta Astronautica, Vol. 2, Nos. 5–6, 1975, pp. 391–407. doi:https://doi.org/10.1016/0094-5765(75)90057-0 AASTCF 0094-5765 CrossrefGoogle Scholar[11] Varsi G., Back L. H. and Kim K., “Blast Wave in a Nozzle for Propulsive Applications,” Acta Astronautica, Vol. 3, Nos. 1–2, 1976, pp. 141–156. doi:https://doi.org/10.1016/0094-5765(76)90099-0 AASTCF 0094-5765 CrossrefGoogle Scholar[12] Roy M., “Propulsion par Statoreacteur a Detonation,” Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, Vol. 222, 1946, pp. 31–32. Google Scholar[13] Nicholls J. A., Wilkinson H. R. and Morrison R. B., “Intermittent Detonation as a Thrust-Producing Mechanism,” Jet Propulsion, Vol. 27, No. 5, 1957, pp. 534–541. doi:https://doi.org/10.2514/8.12851 JETPAV 0095-8751 LinkGoogle Scholar[14] Zel’dovich Y. B., “To the Question of Energy Use of Detonation Combustion,” Journal of Propulsion and Power, Vol. 22, No. 3, 2006, pp. 588–592. doi:https://doi.org/10.2514/1.22705 JPPOEL 0748-4658 LinkGoogle Scholar[15] Goddard R. H., “Reaction Combustion Chamber for Unconfined Charges of Detonative Fuel Fed Intermittently to the Combustion Chamber,” U.S. Patent No. 2,465,525, filed 29 March 1949. Google Scholar[16] Bussing T. and Pappas G., “An Introduction to Pulse Detonation Engines,” 32nd Aerospace Sciences Meeting and Exhibit, AIAA Paper 1994-0263, Jan. 1994. LinkGoogle Scholar[17] Duff R. E., “Investigation of Spinning Detonation and Detonation Stability,” Physics of Fluids, Vol. 4, No. 11, 1961, pp. 1427–1433. doi:https://doi.org/10.1063/1.1706235 CrossrefGoogle Scholar[18] Schott G. L., “Observations of the Structure of Spinning Detonation,” Physics of Fluids, Vol. 8, No. 5, 1965, pp. 850–865. doi:https://doi.org/10.1063/1.1761328 CrossrefGoogle Scholar[19] Edwards D. H., Parry D. J. and Jones A. T., “The Structure of the Wave Front in Spinning Detonation,” Journal of Fluid Mechanics, Vol. 26, No. 2, 1966, pp. 321–336. doi:https://doi.org/10.1017/S0022112066001265 JFLSA7 0022-1120 CrossrefGoogle Scholar[20] Jones H., “The Dynamics of Spinning Detonation Waves,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 348, No. 1654, 1976, pp. 299–316. doi:https://doi.org/10.1098/rspa.1976.0040 CrossrefGoogle Scholar[21] Voitsekhovskii B. V., “Statsionarnaya Dyetonatsiya,” Doklady Akademii Nauk SSSR, Vol. 129, No. 6, 1959, pp. 1254–1256. Google Scholar[22] Voitsekhovskii B. V., Mitrofanov V. V. and Topchiyan M. E., “Struktura fronta Dyetonatsii v Gazakh,” Izdatel’stvo Sibirskogo Otdeleniya AN SSSR, Vol. 129, No. 6, 1963, pp. 1254–1256. Google Scholar[23] Nicholls J. A. and Cullen R. E., “The Feasibility of a Rotating Detonation Wave Rocket Motor,” Univ. of Michigan, TR-RPL-TDR-64-113, Ann Arbor, MI, 1964. Google Scholar[24] Nicholls J. A., Cullen R. E. and Ragland K. W., “Feasibility Studies of a Rotating Detonation Wave Rocket Motor,” Journal of Spacecraft and Rockets, Vol. 3, No. 6, 1966, pp. 893–898. doi:https://doi.org/10.2514/3.28557 JSCRAG 0022-4650 LinkGoogle Scholar[25] Adamson T. C. and Olsson G. R., “Performance Analysis of a Rotating Detonation Wave Rocket Engine (Rotating Detonation Wave Rocket Engine Performance Analyzed and Compared to Conventional Rocket Engines),” Acta Astronautica, Vol. 14, No. 4, 1967, pp. 405–415. AASTCF 0094-5765 Google Scholar[26] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., “Continuous Spin Detonations,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1204–1216. doi:https://doi.org/10.2514/1.17656 JPPOEL 0748-4658 LinkGoogle Scholar[27] Bykovskii F. A. and Vedernikov E. F., “Self-Sustaining Pulsating Detonation of Gas-Mixture Flow,” Combustion, Explosion, and Shock Waves, Vol. 32, No. 4, 1996, pp. 442–448. doi:https://doi.org/10.1007/BF01998496 CrossrefGoogle Scholar[28] Bykovskii F. A. and Vedernikov E. F., “Continuous Detonation Combustion of an Annular Gas-Mixture Layer,” Combustion, Explosion, and Shock Waves, Vol. 32, No. 5, 1996, pp. 489–491. doi:https://doi.org/10.1007/BF01998570 CrossrefGoogle Scholar[29] Bykovskii F. A. and Mitrofanov V. V., “A Continuous Spin Detonation in Liquid Fuel Sprays,” Control of Detonation Processes, edited by Roy G. D., Frolov S. M., Netzer D. W. and Borisov A. A., Elex–KM Publishers, Moscow, 2000, pp. 209–211. Google Scholar[30] Bykovskii F. A. and Mitrofanov V. V., “Detonation Combustion of a Gas Mixture in a Cylindrical Chamber,” Combustion, Explosion, and Shock Waves, Vol. 16, No. 5, 1980, pp. 570–578. doi:https://doi.org/10.1007/BF00794937 CrossrefGoogle Scholar[31] Bykovskii F. A., Vasil’ev A. A., Vedernikov E. F. and Mitrofanov V. V., “Explosive Combustion of a Gas Mixture in Radial Annular Chambers,” Combustion, Explosion, and Shock Waves, Vol. 30, No. 4, 1994, pp. 510–516. doi:https://doi.org/10.1007/BF00790158 CrossrefGoogle Scholar[32] Bykovskii F. A. and Vedernikov E. F., “Continuous Detonation of a Subsonic Flow of a Propellant,” Combustion, Explosion, and Shock Waves, Vol. 39, No. 3, 2003, pp. 323–334. doi:https://doi.org/10.1023/A:1023800521344 CrossrefGoogle Scholar[33] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., “Continuous Spin Detonation in Annular Combustors,” Combustion, Explosion, and Shock Waves, Vol. 41, No. 4, 2005, pp. 449–459. doi:https://doi.org/10.1007/s10573-005-0055-6 CrossrefGoogle Scholar[34] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., “Continuous Spin Detonation of Fuel–Air Mixtures,” Combustion, Explosion, and Shock Waves, Vol. 42, No. 4, 2006, pp. 463–471. doi:https://doi.org/10.1007/s10573-006-0076-9 CrossrefGoogle Scholar[35] Shen I. and Adamson T. C., “Theoretical Analysis of a Rotating Two Phase Detonation in a Rocket Motor,” NASA CR-121194, 1973. Google Scholar[36] Sichel M. and Foster J. C., “The Ground Impulse Generated by a Plane Fuel–Air Explosion with Side Relief,” Acta Astronautica, Vol. 6, Nos. 3, 4, 1979, pp. 243–256. doi:https://doi.org/10.1016/0094-5765(79)90096-1 AASTCF 0094-5765 CrossrefGoogle Scholar[37] Fujiwara T. and Tsuge S., “Quasi-One Dimensional Analysis of Gaseous Free Detonations,” Journal of the Physical Society of Japan, Vol. 33, No. 1, 1972, pp. 237–241. doi:https://doi.org/10.1143/JPSJ.33.237 JUPSAU 0031-9015 CrossrefGoogle Scholar[38] Tsuge S. and Fujiwara T., “On the Propagation Velocity of a Detonation-Shock Combined Wave,” ZAMM—Journal of Applied Mathematics and Mechanics, Vol. 54, No. 3, 1974, pp. 157–164. doi:https://doi.org/10.1002/zamm.19740540305 CrossrefGoogle Scholar[39] Pratt D. T., Humphrey J. W. and Glenn D. E., “Morphology of Standing Oblique Detonation Waves,” Journal of Propulsion and Power, Vol. 7, No. 5, 1991, pp. 837–845. doi:https://doi.org/10.2514/3.23399 JPPOEL 0748-4658 LinkGoogle Scholar[40] Stanley S. B., Stuessy W. S. and Wilson D. R., “Experimental Investigation of Pulse Detonation Wave Phenomenon,” 26th AIAA Fluid Dynamics Conference, AIAA Paper 1995-2197, June 1995. LinkGoogle Scholar[41] Panicker P. K., “The Development and Testing of Pulsed Detonation Engine Ground Demonstrators,” Ph.D. Dissertation, Mechanical and Aerospace Engineering Dept., Univ. of Texas at Arlington, Arlington, TX, 2008. Google Scholar[42] Braun E. M., Dunn N. L. and Lu F. K., “Testing of a Continuous Detonation Wave Engine with Swirled Injection,” 48th AIAA Aerospace Sciences Meeting, AIAA Paper 2010-0146, Jan. 2010. LinkGoogle Scholar[43] Pegg R. J., Couch B. D. and Hunter L. G., “Pulse Detonation Engine Air Induction System Analysis,” 32nd Joint Propulsion Conference and Exhibit, AIAA Paper 1996-2918, July 1996. LinkGoogle Scholar[44] Gustavsson J., Nori V. and Segal C., “Inlet/Engine Interactions in an Axisymmetric Pulse Detonation Engine System,” Journal of Propulsion and Power, Vol. 19, No. 2, 2003, pp. 282–286. doi:https://doi.org/10.2514/2.6109 JPPOEL 0748-4658 LinkGoogle Scholar[45] Mullagiri S., Segal C. and Nori P. J., “Oscillating Flows in a Model Pulse Detonation Engine Inlet,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 324–326. doi:https://doi.org/10.2514/2.1951 AIAJAH 0001-1452 LinkGoogle Scholar[46] Allgood D., Gutmark E., Hoke J., Bradley R. and Schauer F., “Performance Measurements of Multicycle Pulse-Detonation-Engine Exhaust Nozzles,” Journal of Propulsion and Power, Vol. 22, No. 1, 2006, pp. 70–77. doi:https://doi.org/10.2514/1.11499 JPPOEL 0748-4658 LinkGoogle Scholar[47] Owens Z. C. and Hanson R. K., “Single-Cycle Unsteady Nozzle Phenomena in Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 23, No. 2, 2007, pp. 325–337. doi:https://doi.org/10.2514/1.22415 JPPOEL 0748-4658 LinkGoogle Scholar[48] Shepherd J. E., “Structural Response of Piping to Internal Gas Detonation,” Journal of Pressure Vessel Technology, Vol. 131, No. 3, 2009, Paper 031204. doi:https://doi.org/10.1115/1.3089497 JPVTAS 0094-9930 CrossrefGoogle Scholar[49] Zhu D., Fox D. S., Miller R. A., Ghosn L. J. and Kalluri S., “Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials,” Surface and Coatings Technology, Vols. 188–189, 2004, pp. 13–19. doi:https://doi.org/10.1016/j.surfcoat.2004.07.101 SCTEEJ 0257-8972 CrossrefGoogle Scholar[50] Warwick G., “DARPA Steps Up Air Vehicle Activity,” Flight International, Reed Business Information, Ltd., Hounslow, Middlesex, 2005, http://www.flightglobal.com/articles/2005/04/26/197138/darpa-steps-up-air-vehicle-activity.html [retrieved 16 June 2011]. Google Scholar[51] Nikolaev Y. A. and Gaponov O. A., “On Gas Detonation Limits,” Combustion, Explosion, and Shock Waves, Vol. 31, No. 3, 1995, pp. 395–400. doi:https://doi.org/10.1007/BF00742687 CrossrefGoogle Scholar[52] Li J., Lai W. H. and Chung K., “Tube Diameter Effect on Deflagration-to-Detonation Transition of Propane–Oxygen Mixtures,” Shock Waves, Vol. 16, No. 2, 2006, pp. 109–117. doi:https://doi.org/10.1007/s00193-006-0056-8 SHWAEN 0938-1287 CrossrefGoogle Scholar[53] Kagan L., “On the Transition from Deflagration to Detonation in Narrow Channels,” Mathematical Modelling of Natural Phenomena, Vol. 2, No. 2, 2007, pp. 40–55. doi:https://doi.org/10.1051/mmnp:2008018 CrossrefGoogle Scholar[54] Kitovides D., “Viscous Microdetonation Physics,” Physics Letters A, Vol. 363, Nos. 5–6, 2007, pp. 458–467. doi:https://doi.org/10.1016/j.physleta.2006.11.029 PYLAAG 0375-9601 CrossrefGoogle Scholar[55] Hasegawa S., Shimizu M., Susa A. and Endo T., “Experiments on Detonation Initiation and Propagation in Extremely Thin Channels,” Science and Technology of Energetic Materials, Vol. 72, No. 2, 2011, pp. 62–67. Google Scholar[56] Kawane K., Shimada S., Kasahara J. and Matsuo A., “The Influence of Heat Transfer and Friction on the Impulse of a Detonation Tube,” Combustion and Flame, Vol. 158, No. 10, 2011, pp. 2023–2036. doi:https://doi.org/10.1016/j.combustflame.2011.02.017 CBFMAO 0010-2180 CrossrefGoogle Scholar[57] Kailasanath K., “Recent Developments in the Research on Pulse Detonation Engines,” AIAA Journal, Vol. 41, No. 2, 2003, pp. 145–159. doi:https://doi.org/10.2514/2.1933 AIAJAH 0001-1452 LinkGoogle Scholar[58] Roy G. D., Frolov S. M., Borisov A. A. and Netzer D. W., “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective,” Progress in Energy and Combustion Science, Vol. 30, No. 6, 2004, pp. 545–672. doi:https://doi.org/10.1016/j.pecs.2004.05.001 PECSDO 0360-1285 CrossrefGoogle Scholar[59] Rasheed A., Furman A. H. and Dean A. J., “Experimental Investigations of the Performance of a Multitube Pulse Detonation Turbine System,” Journal of Propulsion and Power, Vol. 27, No. 3, 2011, pp. 586–596. doi:https://doi.org/10.2514/1.B34013 JPPOEL 0748-4658 LinkGoogle Scholar[60] Canteins G., “Etude de la Détonation Continue Rotative—Application à la Propulsion,” Ph.D. Dissertation, University of Poitiers, Poitiers, France, 2007. Google Scholar[61] Wolanski P., “Detonative Propulsion,” Proceedings of the Combustion Institute, Vol. 34, No. 1, 2013, pp. 125–158. doi:https://doi.org/10.1016/j.proci.2012.10.005 1540-7489 CrossrefGoogle Scholar[62] Rybanin S. S., “Turbulence in Detonation,” Combustion, Explosion, and Shock Waves, Vol. 2, No. 1, 1966, pp. 15–18. doi:https://doi.org/10.1007/BF00750590 CrossrefGoogle Scholar[63] Andreopoulos Y., Agui J. H. and Briassulis G., “Shock Wave–Turbulence Interactions,” Annual Review of Fluid Mechanics, Vol. 32, Jan. 2000, pp. 309–345. doi:https://doi.org/10.1146/annurev.fluid.32.1.309 ARVFA3 0066-4189 CrossrefGoogle Scholar[64] Larsson J. and Lele S. K., “Direct Numerical Simulation of Canonical Shock/Turbulence Interaction,” Physics of Fluids, Vol. 21, No. 12, 2009, Paper 126101. doi:https://doi.org/10.1063/1.3275856 CrossrefGoogle Scholar[65] Shepherd J. E., “Detonation in Gases,” Proceedings of the Combustion Institute, Vol. 32, No. 1, 2009, pp. 83–98. doi:https://doi.org/10.1016/j.proci.2008.08.006 1540-7489 CrossrefGoogle Scholar[66] Massa L. and Lu F. K., “Role of the Induction Zone on Detonation–Turbulence Linear Interaction,” Combustion Theory and Modelling, Vol. 15, No. 3, 2011, pp. 347–371. doi:https://doi.org/10.1080/13647830.2010.540353 CrossrefGoogle Scholar[67] Massa L., Chauhan M. and Lu F. K., “Detonation–Turbulence Interaction,” Combustion and Flame, Vol. 158, No. 9, 2011, pp. 1788–1806. doi:https://doi.org/10.1016/j.combustflame.2011.01.014 CBFMAO 0010-2180 CrossrefGoogle Scholar[68] Thomas L. M., Schauer F. R., Hoke J. L. and Naples A., “Buildup and Operation of a Rotating Detonation Engine,” 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0602, Jan. 2011. LinkGoogle Scholar[69] Hishida M., Fujiwara T. and Wolanski P., “Fundamentals of Rotating Detonations,” Shock Waves, Vol. 19, No. 1, 2009, pp. 1–10. doi:https://doi.org/10.1007/s00193-008-0178-2 SHWAEN 0938-1287 CrossrefGoogle Scholar[70] Yi T.-H., Lou J., Turangan C., Choi J.-Y. and Wolanski P., “Propulsive Performance of a Continuously Rotating Detonation Engine,” Journal of Propulsion and Power, Vol. 27, No. 1, 2011, pp. 171–181. doi:https://doi.org/10.2514/1.46686 JPPOEL 0748-4658 LinkGoogle Scholar[71] Kailasanath K., “Liquid-Fueled Detonations in Tubes,” Journal of Propulsion and Power, Vol. 22, No. 6, 2006, pp. 1261–1268. doi:https://doi.org/10.2514/1.19624 JPPOEL 0748-4658 LinkGoogle Scholar[72] Tucker K. C., King P. I. and Schauer F. R., “Hydrocarbon Fuel Flash Vaporization for Pulsed Detonation Combustion,” Journal of Propulsion and Power, Vol. 24, No. 4, 2008, pp. 788–796. doi:https://doi.org/10.2514/1.28412 JPPOEL 0748-4658 LinkGoogle Scholar[73] Wen C.-S., Chung K.-M., Lu F. K. and Lai W.-H., “Assessment of Flash-Boiling for Pulse Detonation Engines,” International Journal of Heat and Mass Transfer, Vol. 55, Nos. 11–12, 2012, pp. 2751–2760. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2012.02.030 IJHMAK 0017-9310 CrossrefGoogle Scholar[74] Massa L., Austin J. M. and Jackson T. L., “Triple-Point Shear Layers in Gaseous Detonation Waves,” Journal of Fluid Mechanics, Vol. 586, Sept. 2007, pp. 205–248. doi:https://doi.org/10.1017/S0022112007007008 JFLSA7 0022-1120 CrossrefGoogle Scholar[75] Liu S.-J., Lin Z.-Y., Liu W.-D., Lin W. and Zhuang F.-C., “Experimental Realization of H2/Air Continuous Rotating Detonation in a Cylindrical Combustor,” Combustion Science and Technology, Vol. 184, No. 9, 2012, pp. 1302–1317. doi:https://doi.org/10.1080/00102202.2012.682669 CBSTB9 0010-2202 CrossrefGoogle Scholar[76] Zhdan S. A. and Syryamin A. S., “Numerical Modeling of Continuous Detonation in Non-Stoichiometric Hydrogen–Oxygen Mixtures,” Combustion, Explosion, and Shock Waves, Vol. 49, No. 1, 2013, pp. 69–78. doi:https://doi.org/10.1134/S0010508213010085 CrossrefGoogle Scholar[77] Russo R. M., King P. I., Schauer F. R. and Thomas L. M., “Characterization of Pressure Rise Across a Continuous Detonation Engine,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-6046, July–Aug. 2011. LinkGoogle Scholar[78] Thomas G. O. and Williams R. L., “Detonation Interaction with Wedges and Bends,” Shock Waves, Vol. 11, No. 6, 2002, pp. 481–492. doi:https://doi.org/10.1007/s001930200133 SHWAEN 0938-1287 CrossrefGoogle Scholar[79] Frolov S. M., Aksenov V. S. and Shamshin I. O., “Shock Wave and Detonation Propagation Through U-Bend Tubes,” Proceedings of the Combustion Institute, Vol. 31, No. 2, 2007, pp. 2421–2428. doi:https://doi.org/10.1016/j.proci.2006.07.197 1540-7489 CrossrefGoogle Scholar[80] Kudo Y., Nagura Y., Kasahara J., Sasamoto Y. and Matsuo A., “Oblique Detonation Waves Stabilized in Rectangular-Cross-Section Bent Tubes,” Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 2319–2326. doi:https://doi.org/10.1016/j.proci.2010.08.008 1540-7489 CrossrefGoogle Scholar[81] Nakayama H., Moriya T., Kasahara J., Matsuo A., Sasamoto Y. and Matsuo A., “Stable Detonation Wave Propagation in Rectangular-Cross-Section Curved Channels,” Combustion and Flame, Vol. 159, No. 2, 2012, pp. 859–869. doi:https://doi.org/10.1016/j.combustflame.2011.07.022 CBFMAO 0010-2180 CrossrefGoogle Scholar[82] Lee S.-Y., Jo D.-R. and Choi J.-Y., “Effect of Curvature on the Detonation Wave Propagation Characteristics in Annular Channels,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2008-0988, Jan. 2008. LinkGoogle Scholar[83] Pan Z., Fan B., Zhang X., Gui M. and Dong G., “Wavelet Pattern and Self-Sustained Mechanism of Gaseous Detonation Rotating in a Coaxial Cylinder,” Combustion and Flame, Vol. 158, No. 11, 2011, pp. 2220–2228. doi:https://doi.org/10.1016/j.combustflame.2011.03.016 CBFMAO 0010-2180 CrossrefGoogle Scholar[84] Uemura Y., Hayashi A. K., Asahara M., Tsuboi N. and Yamada E., “Transverse Wave Generation Mechanism in Rotating Detonation,” Proceedings of the Combustion Institute, Vol. 34, No. 2, 2012, pp. 1981–1989. doi:https://doi.org/10.1016/j.proci.2012.06.184 1540-7489 CrossrefGoogle Scholar[85] Zhou R. and Wang J.-P., “Numerical Investigation of Shock Wave Reflections Near the Head Ends of Rotating Detonation Engines,” Shock Waves, Vol. 23, No. 5, 2013, pp. 461–472. doi:https://doi.org/10.1007/s00193-013-0440-0 SHWAEN 0938-1287 CrossrefGoogle Scholar[86] Kindracki J., Wolanski P. and Gut Z., “Experimental Research on the Rotating Detonation in Gaseous Fuels–Oxygen Mixtures,” Shock Waves, Vol. 21, No. 2, 2011, pp. 75–84. doi:https://doi.org/10.1007/s00193-011-0298-y SHWAEN 0938-1287 CrossrefGoogle Scholar[87] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., “Continuous Spin Detonation of Hydrogen–Oxygen Mixtures. 1. Annular Cylindrical Combustors,” Combustion, Explosion, and Shock Waves, Vol. 44, No. 2, 2008, pp. 150–162. doi:https://doi.org/10.1007/s10573-008-0021-1 CrossrefGoogle Scholar[88] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., “Continuous Spin Detonation in the Regime of Self-Oscillatory Ejection of the Oxidizer. 2. Air as an Oxidizer,” Combustion, Explosion, and Shock Waves, Vol. 47, No. 2, 2011, pp. 217–225. doi:https://doi.org/10.1134/S0010508211020110 CrossrefGoogle Scholar[89] Dyer R., Naples A., Kaemming T., Hoke J. and Schauer F., “Parametric Testing of a Unique Rotating Detonation Engine Design,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012-0121, Jan. 012. Google Scholar[90] Clayton R. M., Rogero R. S. and Sotter J. G., “An Experimental Description of Destructive Liquid Rocket Resonant Combustion,” AIAA Journal, Vol. 6, No. 7, 1968, pp. 1252–1259. doi:https://doi.org/10.2514/3.4730 AIAJAH 0001-1452 LinkGoogle Scholar[91] Voitsekhovskii B. V., “Stationary Spin Detonation,” Soviet Journal of Applied Mechanics and Technical Physics, Vol. 3, 1960, pp. 157–164. Google Scholar[92] Brophy C. M., Sinibaldi J. O. and Damphousse P., “Initiator Performance for Liquid-Fueled Pulse Detonation Engines,” 40th AIAA Aerospace Sciences Meeting & Exhibit, AIAA Paper 2002-0472, Jan. 2002. LinkGoogle Scholar[93] Liu S.-J., Lin Z.-Y., Liu W.-D., Lin W. and Sun M.-B., “Experimental and Three-Dimensional Numerical Investigations on H2/Air Continuous Rotating Detonation Wave,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 227, No. 2, 2013, pp. 326–341. doi:https://doi.org/10.1177/0954410011433542 CrossrefGoogle Scholar[94] Le Naour B., Falempin F. and Miquel F., “Recent Experimental Results Obtained on Continuous Detonation Wave Engine,” 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2011-2235, April 2011. Google Scholar[95] Schwer D. and Kailasanath K., “Numerical Investigation of the Physics of Rotating-Detonation-Engines,” Proceedings of the Combustion Institute, Vol. 33, No. 2, 2011, pp. 2195–2202. doi:https://doi.org/10.1016/j.proci.2010.07.050 1540-7489 CrossrefGoogle Scholar[96] Braun E. M., Balcazar T. S., Wilson D. R. and Lu F. K., “Experimental Study of a High-Frequency Fluidic Valve Fuel Injector,” Journal of Propulsion and Power, Vol. 28, No. 5, 2012, pp. 1121–1125. doi:https://doi.org/10.2514/1.59793 JPPOEL 0748-4658 LinkGoogle Scholar[97] Zhdan S. A., “Mathematical Model of Continuous Detonation in an Annular Combustor with a Supersonic Flow Velocity,” Combustion, Explosion, and Shock Waves, Vol. 44, No. 6, 2008, pp. 690–697. doi:https://doi.org/10.1007/s10573-008-0104-z CrossrefGoogle Scholar[98] Edwards B. D., “Maintained Detonation Waves in an Annular Channel: A Hypothesis Which Provides the Link Between Classical Acoustic Combustion Instability and Detonation Waves,” Symposium (International) on Combustion, Vol. 16, No. 1, 1977, pp. 1611–1618. doi:https://doi.org/10.1016/S0082-0784(77)80440-2 SYMCAQ CrossrefGoogle Scholar[99] Schwer D. A. and Kailasanath K., “Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-6044, July–Aug. 2011. LinkGoogle Scholar[100] Schwer D. A. and Kailasanath K., “Feedback into Mixture Plenums in Rotating Detonation Engines,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012-0617, Jan. 2012. LinkGoogle Scholar[101] Schwer D. A. and Kailasanath K., “Modeling Exhaust Effects in Rotating Detonation Engines,” 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2012-3943, July–Aug. 2012. LinkGoogle Scholar[102] Falempin F. and Le Naour B., “R&T Effort on Pulsed and Continuous Detonation Wave Engines,” 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2009-7284, 2009. LinkGoogle Scholar[103] Russo R. M., “Operational Characteristics of a Rotating Detonation Engine Using Hydrogen and Air,” M.S. Thesis, Dept. of Aeronautics and Astronautics, U.S. Air Force Inst. of Technology, Wright–Patterson AFB, OH, 2011. Google Scholar[104] Shank J. C., “Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air,” M.S. Thesis, Dept. of Aeronautics and Astronautics, U.S. Air Force Inst. of Technology, Wright–Patterson AFB, OH, 2012. Google Scholar[105] Suchocki J. A., “Operational Space and Characterization of a Rotating Detonation Engine Using Hydrogen and Air,” M.S. Thesis, Dept. of Mechanical and Aerospace Engineering, Ohio State Univ., Columbus, OH, 2012. Google Scholar[106] Braun E. M., Lu F. K., Wilson D. R. and Camberos J., “Airbreathing Rotating Detonation Wave Engine Cycle Analysis,” Aerospace Science and Technology, Vol. 27, No. 1, 2013, pp. 201–208. doi:https://doi.org/10.1016/j.ast.2012.08.010 ARSTFZ 1270-9638 CrossrefGoogle Scholar[107] Bykovskii F. A. and Vedernikov E. F., “Heat Fluxes to Combustor Walls During Continuous Spin Detonation of Fuel–Air Mixtures,” Combustion, Explosion, and Shock Waves, Vol. 45, No. 1, 2009, pp. 70–77. doi:https://doi.org/10.1007/s10573-009-0010-z CrossrefGoogle Scholar[108] Bykovskii F. A., Vedernikov E. F., Polozov S. V. and Golubev Y. V., “Initiation of Detonation in Flows of Fuel–Air Mixtures,” Combustion, Explosion, and Shock Waves, Vol. 43, No. 3, 2007, pp. 345–354. doi:https://doi.org/10.1007/s10573-007-0048-8 CrossrefGoogle Scholar[109] Bykovskii F. A., Zhdan S. A. and Vedernikov E. F., “Continuous Spin Detonation of Hydrogen–Oxygen Mixtures. 2. Combustor with an Expanding Annular Channel,” Combustion, Explosion, and Shock Waves, Vol. 44, No. 3, 2008, pp. 330–342. doi:https://doi.org/10.1007/s10573-008-0041-x CrossrefGoogle Scholar[110] Nordeen C. A., Schwer D., Schauer F., Hoke J., Cetegen B. and Barber T., “Thermodynamic Modeling of a Rotating Detonation Engine,” 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0803, Jan. 2011. LinkGoogle Scholar[111] Schwer D. A. and Kailasanath K., “Numerical Study of the Effects of Engine Size on Rotating Detonation Engines,” 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0581, Jan. 2011. LinkGoogle Scholar[112] Shapiro A. H., Dynamics and Thermodynamics of Compressible Fluid Flow, Vol. 1, Ronald Press, New York, 1953, pp. 206–211. Google Scholar[113] Kentfield J. A. C., “Fundamentals of Idealized Airbreathing Pulse-Detonation Engines,” Journal of Propulsion and Power, Vol. 18, No. 1, 2002, pp. 77–83. doi:https://doi.org/10.2514/2.5900 JPPOEL 0748-4658 LinkGoogle Scholar[114] Kentfield J. A. C., “Thermodynamics of Airbreathing Pulse-Detonation Engines,” Journal of Propulsion and Power, Vol. 18, No. 6, 2002, pp. 1170–1175. doi:https://doi.org/10.2514/2.6075 JPPOEL 0748-4658 LinkGoogle Scholar[115] Talley D. G. and Coy E. B., “Constant Volume Limit of Pulsed Propulsion for a Constant γ Ideal Gas,” Journal of Propulsion and Power, Vol. 18, No. 2, 2002, pp. 400–406. doi:https://doi.org/10.2514/2.5948 JPPOEL 0748-4658 LinkGoogle Scholar[116] Braun E. M., “New Detonation Concepts for Propulsion and Power Generation,” Ph.D. Dissertation, Mechanical and Aerospace Engineering Dept., Univ. of Texas at Arlington, Arlington, TX, 2012. Google Scholar[117] Akbari P. and Nalim M. R., “Review of Recent Developments in Wave Rotor Combustion Technology,” Journal of Propulsion and Power, Vol. 25, No. 4, 2009, pp. 833–844. doi:https://doi.org/10.2514/1.34081 JPPOEL 0748-4658 LinkGoogle Scholar[118] Fickett W. and Davis W. C., Detonation: Theory and Experiment, Dover, Mineola, NY, 2000, pp. 55–65. Google Scholar[119] Roy G. D., Frolov S. M., Borisov A. A. and Netzer D. W., “Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective,” Progress in Energy and Combustion Science, Vol. 30, No. 6, 2004, pp. 545–672. doi:https://doi.org/10.1016/j.pecs.2004.05.001 PECSDO 0360-1285 CrossrefGoogle Scholar[120] Vutthivithayarak R., Braun E. M. and Lu F. K., “Examination of the Various Cycles for Pulse Detonation Engines,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2011-6064, July–Aug. 2011. LinkGoogle Scholar[121] Vutthivithayarak R., Braun E. M. and Lu F. K., “On Thermodynamic Cycles for Detonation Engines,” Proceedings of the 28th International Symposium on Shock Waves, edited by Kontis K., Paper 2011-2645, Univ. of Manchester, Manchester, England, U.K., 2011. Google Scholar[122] Heiser W. H. and Pratt D. T., “Thermodynamic Cycle Analysis of Pulse Detonation Engines,” Journal of Propulsion and Power, Vol. 18, No. 1, 2002, pp. 68–76. doi:https://doi.org/10.2514/2.5899 JPPOEL 0748-4658 LinkGoogle Scholar[123] Nordeen C. A., “Thermodynamic Analysis of a Rotating Detonation Engine,” Ph.D. Dissertation, Univ. of Connecticut, Storrs, CT, 2013. Google Scholar[124] Camberos J. A. and Moorhouse D. J., (eds.), Exergy Analysis and Design Optimization for Aerospace Vehicles and Systems, Progress in Aeronautics and Astronautics, AIAA, Reston, VA, 2011. Google Scholar[125] Braun E. M., Lu F. K., Wilson D. R. and Camberos J., “Detonation Engine Performance Comparison Using First and Second Law Analyses,” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2010-7040, July 2010. LinkGoogle Scholar[126] Cao H., “Analytical Parametric Analysis of Continuous Rotating Detonation Ejector-Augmented Rocket Engine,” M.S. Thesis, Mechanical and Aerospace Engineering Dept., Univ. of Texas at Arlington, Arlington, TX, 2011. Google Scholar[127] Zhdan S. A., Mardashev A. M. and Mitrofanov V. V., “Calculation of the Flow of Spin Detonation in an Annular Chamber,” Combustion, Explosion, and Shock Waves, Vol. 26, No. 2, 1990, pp. 210–214. doi:https://doi.org/10.1007/BF00742414 CrossrefGoogle Scholar[128] Schwer D. and Kailasanath K., “Fluid Dynamics of Rotating Detonation Engines with Hydrogen and Hydrocarbon Fuels,” Proceedings of the Combustion Institute, Vol. 34, No. 2, 2013, pp. 1991–1998. doi:https://doi.org/10.1016/j.proci.2012.05.046 CrossrefGoogle Scholar[129] Schwer D. A. and Kailasanath K., “Numerical Investigation of Rotating Detonation Engines,” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2010-6880, July 2010. LinkGoogle Scholar[130] Zhou R. and Wang J.-P., “Numerical Investigation of Flow Particle Paths and Thermodynamic Performance of Continuously Rotating Detonation Engines,” Combustion and Flame, Vol. 159, No. 12, 2012, pp. 3632–3645. doi:https://doi.org/10.1016/j.combustflame.2012.07.007 CBFMAO 0010-2180 CrossrefGoogle Scholar[131] Zhdan S. A., Bykovskii F. A. and Vedernikov E. F., “Mathematical Modeling of a Rotating Detonation Wave in a Hydrogen–Oxygen Mixture,” Combustion, Explosion, and Shock Waves, Vol. 43, No. 4, 2007, pp. 449–459. doi:https://doi.org/10.1007/s10573-007-0061-y CrossrefGoogle Scholar[132] Mattingly J. D., Elements of Propulsion: Gas Turbines and Rockets, AIAA, Reston, VA, 2006, pp. 22, 243. LinkGoogle Scholar[133] Fujiwara T., Hishida M., Kindracki J. and Wolanski P., “Stabilization of Detonation for Any Incoming Mach Numbers,” Combustion, Explosion, and Shock Waves, Vol. 45, No. 5, 2009, pp. 603–605. doi:https://doi.org/10.1007/s10573-009-0072-y CrossrefGoogle Scholar[134] Shao Y.-T. and Wang J.-P., “Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation,” Chinese Physics Letters, Vol. 27, No. 3, 2010, Paper 034705. doi:https://doi.org/10.1088/0256-307X/27/3/034705 CPLEEU 0256-307X Google Scholar Next article

Referência(s)
Altmetric
PlumX