Asymmetric Enzymatic Hydration of Hydroxystyrene Derivatives
2013; Wiley; Volume: 52; Issue: 8 Linguagem: Inglês
10.1002/anie.201207916
ISSN1521-3773
AutoresChristiane Wuensch, Johannes Gross, Georg Steinkellner, Karl Gruber, Silvia M. Glueck, Kurt Faber,
Tópico(s)Biochemical and biochemical processes
ResumoAngewandte Chemie International EditionVolume 52, Issue 8 p. 2293-2297 Communication Asymmetric Enzymatic Hydration of Hydroxystyrene Derivatives† Christiane Wuensch, Christiane Wuensch ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)Search for more papers by this authorJohannes Gross, Johannes Gross ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)Search for more papers by this authorDr. Georg Steinkellner, Dr. Georg Steinkellner ACIB GmbH c/o Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz (Austria)Search for more papers by this authorProf. Karl Gruber, Prof. Karl Gruber Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz (Austria)Search for more papers by this authorDr. Silvia M. Glueck, Corresponding Author Dr. Silvia M. Glueck [email protected] ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria) Silvia M. Glueck, ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)=== Kurt Faber, Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)===Search for more papers by this authorProf. Kurt Faber, Corresponding Author Prof. Kurt Faber [email protected] Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria) Silvia M. Glueck, ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)=== Kurt Faber, Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)===Search for more papers by this author Christiane Wuensch, Christiane Wuensch ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)Search for more papers by this authorJohannes Gross, Johannes Gross ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)Search for more papers by this authorDr. Georg Steinkellner, Dr. Georg Steinkellner ACIB GmbH c/o Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz (Austria)Search for more papers by this authorProf. Karl Gruber, Prof. Karl Gruber Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, 8010 Graz (Austria)Search for more papers by this authorDr. Silvia M. Glueck, Corresponding Author Dr. Silvia M. Glueck [email protected] ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria) Silvia M. Glueck, ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)=== Kurt Faber, Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)===Search for more papers by this authorProf. Kurt Faber, Corresponding Author Prof. Kurt Faber [email protected] Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria) Silvia M. Glueck, ACIB GmbH c/o Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)=== Kurt Faber, Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstrasse 28, 8010 Graz (Austria)===Search for more papers by this author First published: 17 January 2013 https://doi.org/10.1002/anie.201207916Citations: 67 † This work has been supported by the Austrian BMWFJ, BMVIT, SFG, Standortagentur Tirol, and ZIT through the Austrian FFG-COMET- Funding Program. Byung-Gee Kim (School of Chemical and Biological Engineering, Seoul National University, Seoul, South Korea) is cordially thanked for the generous donation of phenolic acid decarboxylase plasmids. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract More than one activity: Owing to their hydratase activity, phenolic acid decarboxylases catalyze the regio- and stereoselective addition of H2O across the CC double bond of hydroxystyrene derivatives yielding (S)-4-(1-hydroxyethyl)phenols with up to 82 % conversion and 71 % ee. Based on structure analysis and molecular docking simulations, a catalytic mechanism for this novel enzymatic reaction is proposed. Supporting Information As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors. Filename Description anie_201207916_sm_miscellaneous_information.pdf1.7 MB miscellaneous_information Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References 1J. Jin, U. Hanefeld, Chem. Commun. 2011, 47, 2502–2510. 2H.-D. Hahn, G. Dämbkes, N. Rupprich, H. Bahl, Butanols in Ullmann’s Encyclopedia of Industrial Chemistry, Electronic version, Wiley-VCH, Weinheim, 2010. 3E. Hartmann, D. J. Vyas, M. Oesterreich, Chem. Commun. 2011, 47, 7917–7932. 4S.-Q. Wang, Z.-W. Wang, L.-C. Yang, J.-I. Dong, C.-Q. Chi, D.-N. Sui, Y.-Z. Wang, J.-G. Ren, M.-Y. Hung, Y.-Y. Jiang, J. Mol. Catal. A 2007, 264, 60–65. 5A. J. Boersma, D. Coquiere, D. Geerdink, F. Rosati, B. L. Feringa, G. Roelfes, Nat. Chem. 2010, 2, 991–995. 6J. P. Bennett, L. Bertin, B. Moulton, I. J. S. Fairlamb, A. M. Brzozowski, N. J. Walton, G. Grogan, Biochem. J. 2008, 414, 281–289. 7 7aF. tenBrink, B. Schink, P. M. H. Kroneck, J. Bacteriol. 2011, 193, 1229–1236; 7bR.-Z. Liao, F. Himo, ACS Catal. 2011, 1, 937–944; 7cR.-Z. Liao, J.-G. Yu, F. Himo, Proc. Natl. Acad. Sci. USA 2010, 107, 22523–22527; 7dG. B. Seiffert, G. M. Ullmann, A. Messerschmidt, B. Schink, P. M. H. Kroneck, O. Einsle, Proc. Natl. Acad. Sci. USA 2007, 104, 3073–3077. 8 8aL. E. Bevers, M. W. H. Pinkse, P. D. E. M. Verhaert, W. R. Hagen, J. Bacteriol. 2009, 191, 5010–5012; 8bA. Volkov, A. Liavonchanka, O. Kamneva, T. Fiedler, C. Goebel, B. Kreikemeyer, I. Feussner, J. Biol. Chem. 2010, 285, 10353–10361. 9C. S. Turbek, D. A. Simth, C. L. Schardl, FEMS Microbiol. Lett. 1992, 94, 187–190. 10J. A. Maresca, J. E. Graham, A. D. Pryant, Photosynth. Res. 2008, 97, 121–140. 11D. Brodkorb, M. Gottschall, R. Marmulla, F. Lüddeke, J. Harder, J. Biol. Chem. 2010, 285, 30436–30442. 12A. Liese, K. Seelbach, A. Buchholz, J. Haberland in Industrial Biotransformations, 2nd ed. ), Wiley-VCH, Weinheim, 2006, p. 465 and p. 488. 13M. Wubbolts in Enzyme Catalysis in Organic Synthesis, 2nd ed (Eds.: ), Wiley-VCH, Weinheim, 2002, pp. 686–697. 14 14aG. Agnihotri, H.-w. Liu, Bioorg. Med. Chem. 2003, 11, 9–20; 14bB. J. Bahnson, V. E. Anderson, G. A. Petsko, Biochemistry 2002, 41, 2621–2629; 14cA. F. Bell, Y. Feng, H. A. Hofstein, S. Parikh, J. Wu, M. J. Rudolph, C. Kisker, A. Whitty, P. J. Tonge, Chem. Biol. 2002, 9, 1247–1255. 15 15aP. M. Leonard, A. M. Brzozowski, A. Lebedev, C. M. Marshall, D. J. Smith, C. S. Verma, N. J. Walton, G. Grogan, Acta Crystallogr. Sect. D 2006, 62, 1494–1501; 15bP. M. Leonard, C. M. Marshall, E. J. Dodson, N. J. Walton, G. Grogan, Acta Crystallogr. Sect. D 2004, 60, 2343–2345; 15cA. Mitra, Y. Kitamura, M. J. Gasson, A. Narbad, A. J. Parr, J. Payne, M. J. C. Rhodes, C. Sewter, N. J. Walton, Arch. Biochem. Biophys. 1999, 365, 10–16. 16J. Jin, A. J. J. Straathof, M. W. H. Pinske, U. Hanefeld, Appl. Microbiol. Biotechnol. 2011, 89, 1831–1840. 17J. Jin, P. C. Oskam, S. K. Karmee, A. J. J. Straathof, U. Hanefeld, Chem. Commun. 2010, 46, 8588–8590. 18 18aU. T. Bornscheuer, R. J. Kazlauskas, Angew. Chem. 2004, 116, 6156–6165; Angew. Chem. Int. Ed. 2004, 43, 6032–6040; 18bM. Svedendahl Humble, P. Berglund, Eur. J. Org. Chem. 2011, 3391–3401. 19C. Wuensch, S. M. Glueck, J. Gross, D. Koszelewski, M. Schober, K. Faber, Org. Lett. 2012, 14, 1974–1977. 20H. Rodriguez, I. Angulo, B. de Las Rivas, N. Campillo, J. A. Paez, R. Munoz, J. M. Mancheno, Proteins Struct. Funct. Bioinf. 2010, 78, 1662–1676. 21W. Gu, J. Yang, Z. Lou, L. Liang, Y. Sun, J. Huang, X. Li, Y. Cao, Z. Meng, K.-Q. Zhang, PLoS ONE 2011, 6, e 16262. 22 22aR. H. H. van den Heuvel, M. W. Fraaije, W. J. H. van Berkel, FEBS Lett. 2000, 481, 109–112; 22bA. Mattevi, M. W. Fraaije, A. Mozzarelli, L. Olivi, A. Coda, W. J. H. Van Berkel, Structure 1997, 5, 907–920. 23 23aD. J. Hopper, L. Cottrell, Appl. Environ. Microbiol. 2003, 69, 3650–3652; 23bC. D. Reeve, M. A. Carver, D. J. Hopper, Biochem. J. 1989, 263, 431–437. 24E. Krieger, G. Koraimann, G. Vriend, Proteins Struct. Funct. Bioinf. 2002, 47, 393–402. Citing Literature Volume52, Issue8February 18, 2013Pages 2293-2297 ReferencesRelatedInformation
Referência(s)