The dual glutamatergic–GABAergic phenotype of hippocampal granule cells
2005; Elsevier BV; Volume: 28; Issue: 6 Linguagem: Inglês
10.1016/j.tins.2005.04.005
ISSN1878-108X
Autores Tópico(s)Memory and Neural Mechanisms
ResumoMarkers of the glutamatergic and GABAergic phenotypes coexist in developing hippocampal granule cells, and activation of these neurons produces simultaneous glutamate-receptor-mediated and GABA-receptor-mediated responses in their postsynaptic cells. In the adult, markers of the GABAergic phenotype and the consequent GABAergic transmission disappear but can be transiently expressed in an activity-dependent manner. Coexistence of glutamate and GABA in neurons from other regions of the brain is being discovered, and the possibility of these neurotransmitters being co-released gives the CNS a powerful computational tool. Although waiting to be confirmed by paired recordings, the hypothesis that glutamate and GABA are co-released from single cells is a valuable heuristic proposal in understanding the plasticity inherent to neuronal communication. Markers of the glutamatergic and GABAergic phenotypes coexist in developing hippocampal granule cells, and activation of these neurons produces simultaneous glutamate-receptor-mediated and GABA-receptor-mediated responses in their postsynaptic cells. In the adult, markers of the GABAergic phenotype and the consequent GABAergic transmission disappear but can be transiently expressed in an activity-dependent manner. Coexistence of glutamate and GABA in neurons from other regions of the brain is being discovered, and the possibility of these neurotransmitters being co-released gives the CNS a powerful computational tool. Although waiting to be confirmed by paired recordings, the hypothesis that glutamate and GABA are co-released from single cells is a valuable heuristic proposal in understanding the plasticity inherent to neuronal communication.
Referência(s)