Estradiol and Progesterone Modulation of Norepinephrine Neurotransmission: Implications for the Regulation of Female Reproductive Behavior
1992; Wiley; Volume: 4; Issue: 3 Linguagem: Inglês
10.1111/j.1365-2826.1992.tb00167.x
ISSN1365-2826
AutoresAnne M. Etgen, Susan Ungar, Nicolas Petitti,
Tópico(s)Hypothalamic control of reproductive hormones
ResumoJournal of NeuroendocrinologyVolume 4, Issue 3 p. 255-271 Estradiol and Progesterone Modulation of Norepinephrine Neurotransmission: Implications for the Regulation of Female Reproductive Behavior Anne M. Etgen, Corresponding Author Anne M. Etgen Departments of Psychiatry and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.Correspondence to: A.M. Etgen, Department of Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.Search for more papers by this authorSusan Ungar, Susan Ungar Departments of Psychiatry and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.Search for more papers by this authorNicolas Petitti, Nicolas Petitti Departments of Psychiatry and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.Search for more papers by this author Anne M. Etgen, Corresponding Author Anne M. Etgen Departments of Psychiatry and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.Correspondence to: A.M. Etgen, Department of Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA.Search for more papers by this authorSusan Ungar, Susan Ungar Departments of Psychiatry and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.Search for more papers by this authorNicolas Petitti, Nicolas Petitti Departments of Psychiatry and Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA.Search for more papers by this author First published: June 1992 https://doi.org/10.1111/j.1365-2826.1992.tb00167.xCitations: 74AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References 1 Pfaff DW. (1980). Estrogens and brain function. Springer-Verlag, New York . 2 Feder HH. (1984). Hormones and sexual behavior. Annu Rev Psychol. 35: 165– 200. 3 Barfield RJ, Rubin BS, Glaser JH, Davis PG. (1982). Sites of action of ovarian hormones in the regulation of oestrous responsiveness in rats. In: J Balthazart, E Prove and R Gilles, eds. Hormones and behaviour in higher vertebrates, 2– 18. Springer-Verlag, Berlin, Heidelberg . 4 Cottingham SL, Pfaff D. (1986). Interconnectedness of steroid hormone-binding neurons: existence and implications. In: D Ganten and D Pfaff, eds. Current topics in neuroendocrinology, vol. 7: 223– 250. Springer-Verlag, Berlin, Heidelberg, New York . 5 Crowley WR. (1986). Reproductive neuroendocrine regulation in the female rat by central catecholamine-neuropeptide interactions: a local control hypothesis. Ann NY Acad Sci. 474: 423– 436. 6 Sakuma Y, Akaishi T. (1987). Cell size, projection path, and localization of estrogen-sensitive neurons in the rat ventromedial hypothalamus. J Neurophysiol. 57: 1148– 1159. 7 Sakuma Y, Pfaff DW. (1982). Properties of ventromedial hypothalamic neurons with axons to midbrain central gray. Exp Brain Res. 46: 292– 300. 8 Dohanich G, Nock B, McEwen BS. (1985). Steroid hormones, receptors and neurotransmitters. In: VK Moudgil, ed. Molecular mechanism of steroid hormone action, 701– 732. Walter de Gruyter, Berlin . 9 Crowley WR, Zemlan FP. (1981). The neurochemical control of mating behavior. In: NT Adler, ed. Neuroendocrinology of reproduction, 451– 484. Plenum Press, New York . 10 Nock B, Feder HH. (1981). Neurotransmitter modulation of steroid action in target cells that mediate reproduction and reproductive behavior. Neurosci Biobehav Rev. 5: 437– 447. 11 Barraclough CA, Sawyer CH. (1957). Blockade of the release of pituitary ovulation hormone in the rat by chlorpromazine and reserpine: possible mechanisms of action. Endocrinology. 61: 341– 351. 12 Barraclough CA, Wise PM. (1982). The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle-stimulating hormone secretion. Endocr Rev. 3: 91– 119. 13 Kalra SP, Kalra PS. (1983). Neural regulation of luteinizing hormone secretion in the rat. Endocr Rev. 4: 311– 351. 14 Ramirez VD, Feder HH, Sawyer CH. (1984). The role of brain catecholamines in the regulation of LH secretion: a critical inquiry. In: L Martini and WF Ganong, eds. Frontiers in neuroendocrinology, vol. 8: 27– 84. Raven Press, New York . 15 Taleisnik S, Sawyer CH. (1986). Activation of the CNS noradrenergic system may inhibit as well as facilitate luteinizing hormone release. Neuroendocrinology. 44: 265– 268. 16 Pau K-YF, Spies HG. (1986). Estrogen-dependent effects of norepinephrine on hypothalamic gonadotropin-releasing hormone release in the rabbit. Brain Res. 399: 15– 23. 17 Janowsky DS, Davis JM. (1970). Progesterone-estrogen effects on the uptake and release of norepinephrine by synaptosomes. Life Sci. 9: 525– 531. 18 Hyatt MC, Tyce GM. (1984). Effects of estradiol on the basal and evoked efflux of norepinephrine and 5-hydroxytryptamine from slices of rat hypothalamus. Life Sci. 35: 2269– 2274. 19 Nagle CA, Rosner JM. (1980). Rat brain norepinephrine release during progesterone-induced LH secretion. Neuroendocrinology. 30: 33– 37. 20 Crowley WR, Rodriquez-Sierra JF, Komisaruk BR. (1977). Monoaminergic mediation of the antinociceptive effect of vaginal stimulation in rats. Brain Res. 137: 67– 84. 21 Hansen S, Ross SB. (1983). Role of descending monoaminergic neurons in the control of sexual behavior: effects of intrathecal infusion of 6-hydroxydopamine and 5, 7-dihydroxytryptamine. Brain Res. 268: 285– 290. 22 Herndon JG, Caggiula AR, Sharp D, Ellis D, Redgate E. (1978). Selective enhancement of the lordotic component of female sexual behavior in rats following destruction of central catecholamine-containing systems. Brain Res. 141: 137– 151. 23 Hansen S, Stanfield EJ, Everitt BJ. (1980). The role of ventral bundle noradrenergic neurones in sensory components of sexual behaviours and coitus-induced pseudopregnancy. Nature. 286: 152– 154. 24 Hansen S, Stanfleld EJ, Everitt BJ. (1981). The effects of lesions of lateral tegmental noradrenergic neurons on components of sexual behavior and pseudopregnancy in female rats. Neuroscience. 6: 1105– 1117. 25 Foreman MM, Moss RL. (1978). Role of hypothalamic alpha and beta adrenergic receptors in the control of lordotic behavior in the ovariectomized-estrogen primed rat. Pharmacol Biochem Behav. 9: 235– 241. 26 Fernandez-Guasti A, Larsson K, Beyer C. (1985). Potentiative action of a- and β-adrenergic receptor stimulation in inducing lordosis behavior. Pharmacol Biochem Behav. 22: 613– 617. 27 Everitt BJ, Fuxe K, Hokfelt T, Jonsson G. (1975). Role of monoamines in the control of hormones on sexual receptivity in the female rat. J Comp Physiol Psychol. 89: 556– 572. 28 Crowley WR, Nock B, Feder HH. (1978). Facilitation of lordosis behavior by clonidine in female guinea pigs. Pharmacol Biochem Behav. 8: 207– 209. 29 Fernandez-Guasti A, Larsson K, Beyer C. (1985). Prevention of progesterone-induced lordosis behavior by alpha or beta adrenergic antagonists in ovariectomized estrogen-primed rats. Pharmacol Biochem Behav. 22: 279– 282. 30 Ward IL, Crowley WR, Zemlan FP, Margules DL. (1975). Monoaminergic mediation of female sexual behavior. J Comp Physiol Psychol. 88: 53– 61. 31 Meyerson BJ. (1964). The effect of neuropharmacological agents on hormone-activated estrous behavior in ovariectomized rats. Arch Int Pharmacodyn Ther. 150: 4– 33. 32 Davis GA, Kohl R. (1977). The influence of α-receptors on lordosis in the female rat. Pharmacol Biochem Behav. 6: 47– 53. 33 Caggiula AR, Herndon JG, Scanlon R, Greenstone D, Bradshaw W, Sharp D. (1979). Dissociation of active from immobility components of sexual behavior in female rats by central 6-hydroxydopamine: implications for CA involvement in sexual behavior and sensorimotor responsiveness. Brain Res. 172: 505– 520. 34 Caldwell JD, Clemens LG. (1986). Norepinephrine infusions into the medial preoptic area inhibit lordosis behavior. Pharmacol Biochem Behav. 24: 1015– 1023. 35 Heritage AS, Grant LD, Stumpf WE. (1977). [3H]estradiol in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde induced fluorescence. J Comp Neurol. 176: 607– 630. 36 Sar M, Stumpf WE. (1981). Central noradrenergic neurones concentrate 3H-oestradiol. Nature. 289: 500– 502. 37 Moore RY, Bloom FE. (1979). Central catecholamine neuron systems: anatomy and histology of the norepinephrine and epinephrine systems. Annu Rev Neurosci. 2: 113– 168. 38 Moore RY, Card JP. (1984). In: A Bjorklund and T Hokfelt, eds. Handbook of chemical neuroanatomy, 123– 156. Elsevier, New York . 39 Blaustein JD, King JC, Toft DO, Turcotte J. (1988). Immunocyto-chemical localization of estrogen-induced progestin receptors in guinea pig brain. Brain Res. 474: 1– 15. 40 Brown TJ, MacLusky NJ, Leranth C, Shanabrough M, Naftolin F. (1990). Progestin receptor-containing cells in guinea pig hypothalamus: afferent connections, morphological characteristics, and neuro-transmitter content. Mol Cell Neurosci. 1: 58– 77. 41 Chan A, Dudley CA, Moss RL. (1984). Hormonal and chemical modulation of ventromedial hypothalamic neurons responsive to vaginocervical stimulation. Neuroendocrinology. 38: 328– 336. 42 Kaba H, Saito H, Otsuka K, Seto K, Kawakami M. (1983). Effects of estrogen on the excitability of neurons from the noradrenergic A1 region to the preoptic and anterior hypothalamic area. Brain Res. 274: 156– 159. 43 Kow L-M, Pfaff DW. (1985). Estrogen effects on neuronal responsiveness to electrical and neurotransmitter stimulation: an in vitro study on the ventromedial nucleus of the hypothalamus. Brain Res. 347: 1– 10. 44 Ungerstedt U. (1984). Measurement of neurotransmitter release by intracranial dialysis. In: CA Marsden, ed. Measurement of neurotransmitter release in vivo, 81– 105. Wiley, New York . 45 Westerink BHC, Damsma G, Rollema H, de Vries JB, Horn AS. (1987). Scope and limitations of in vivo brain dialysis: a comparison of its application to various neurotransmitter systems. Life Sci. 41: 1763– 1776. 46 Vathy IU, Etgen AM. (1988). Ovarian steroids and hypothalamic norepinephrine release: studies using in vivo brain microdialysis. Life Sci. 43: 1493– 1499. 47 Gerhardt GA, Rose GM, Hoffer BJ. (1986). Release of monoamines from striatum of rat and mouse evoked by local application of potassium: evaluation of a new in vivo electrochemical approach. J Neurochem. 46: 842– 850. 48 Benveniste H. (1989). Brain microdialysis. J Neurochem. 42: 1667– 1679. 49 Vathy I, Etgen AM. (1989). Hormonal activation of female sexual behavior is accompanied by hypothalamic norepinephrine release. J Neuroendocrinol. 1: 383– 388. 50 Vathy I, van der Plas J, Vincent PA, Etgen AM. (1991). Intracranial dialysis and microinfusion studies suggest that morphine may act in the ventromedial hypothalamus to inhibit female rat sexual behavior. Horm Behav. 25: 354– 366. 51 Arletti R, Bertolini A. (1985). Oxytocin stimulates lordosis behaviour in female rats. Neuropeptides. 6: 247– 253. 52 Caldwell JD, Prange AJ jr, Pedersen CA. (1986). Oxytocin facilitates the sexual receptivity of estrogen-treated female rats. Neuropeptides. 7: 175– 189. 53 Chesselet M-F. (1984). Presynaptic regulation of neurotransmitter release in the brain: facts and hypothesis. Neuroscience. 12: 347– 375. 54 Langer SZ. (1981). Presynaptic regulation of the release of catecholamines. Pharmacol Rev. 32: 337– 362. 55 Drouva SV, LaPlante E, Gautron J-P, Kordon C. (1984). Effects of 17β-estradiol on LH-RH release from rat mediobasal hypothalamic slices. Neuroendocrinology. 38: 152– 157. 56 Diez-Guerra FJ, Augood S, Emson PC, Dyer RG. (1987). Opioid peptides inhibit the release of noradrenaline from slices of rat medial preoptic area. Exp Brain Res. 66: 378– 384. 57 Wuttke W, Demling J, Sandamann R, Fuchs E. (1985). Estrogen induced interaction of GABA with catecholamines. In: N Ben-Jonathan, JM Bahr and RI Weiner, eds. Catecholamines as hormone regulators, 21– 30. Raven Press, New York . 58 Kendrick KM, Blache D, Fabre-Nys C. (1991). Neurochemical changes in the ventromedial nucleus of the sheep accompanying the luteinizing hormone surge and sexual receptivity. Current Separations. 10: 97. 59 Levitt M, Spector S, Sjoerdsma A, Udenfriend SJ. (1965). Elucidation of the rate-limiting step in norepinephrine biosynthesis in perfused guinea pig heart. J Pharmacol Exp Ther. 148: 1– 8. 60 Beattie CW, Rodgers DH, Soyka LF. (1972). Influence of ovariectomy and ovarian steroids on hypothalamic tyrosine hydroxylase activity in the rat. Endocrinology. 91: 276– 279. 61 Beattie CW, Soyka LF. (1973). Influence of progestational steroids on hypothalamic tyrosine hydroxylase activity in vitro. Endocrinology. 93: 1453– 1455. 62 Luine VN, McEwen BS, Black IB. (1977). Effect of 170-estradiol on hypothalamic tyrosine hydroxylase activity. Brain Res. 120: 188– 192. 63 Kreiger A, Wuttke W. (1980). Effects of ovariectomy and hyperprolactinemia on tyrosine hydroxylase and dopamine-β-hydroxylase activity in various limbic and hypothalamic structures. Brain Res. 193: 73– 80. 64 Tobias H, Carr LA, Voogt JL. (1981). Effect of estradiol benzoate and clomiphene on tyrosine hydroxylase activity and on luteinizing hormone and prolactin levels in ovariectomized rats. Life Sci. 29: 711– 716. 65 Wang PS, Porter JC. (1986). Hormonal modulation of the quantity and in situ activity of tyrosine hydroxylase in neurites of the median eminence. Proc Natl Acad Sci USA. 83: 9804– 9806. 66 Iuvone PM. (1984). Calcium, ATP, and magnesium activate soluble tyrosine hydroxylase from rat striatum. J Neurochem. 43: 1359– 1368. 67 Haycock DA, Patrick RL. (1981). Catecholamine synthesis regulation in hypothalamic synaptosomes. Brain Res. 214: 371– 385. 68 El Mestikawy S, Gozlan H, Glowinski J, Hamon M. (1985). Characteristics of tyrosine hydroxylase activation by K +-induced depolarization and/ or forskolin in rat striatal slices. J Neurochem. 45: 173– 184. 69 Yanagihara N, Uezono Y, Koda Y, Wada A, Izumi F. (1987). Activation of tyrosine hydroxylase by micromolar concentrations of calcium in digitonin-permeabilized adrenal medullary cells. Biochem Biophys Res Commun. 146: 530– 536. 70 Nicholass J, Fillenz M. (1981). Regulation of synaptosomal tyrosine hydroxylation in different brain regions with noradrenergic innervation. Neurochem Int. 8: 59– 67. 71 Jones EE, Naftolin F. (1990). Estrogen effects on the tuberoinfundibular dopaminergic system in the female rat brain. Brain Res. 510: 84– 91. 72 Morehead MH, Lookingland KJ, Gala RR. (1991). Stress-induced suppression of the prolactin afternoon surge in ovariectomized, estrogen-treated rats and the nocturnal surge in pseudopregnant rats are accompanied by an increase in median eminence dihydroxyphenylacetic acid concentrations. Neuroendocrinology. 4: 208– 212. 73 Lochrie MA, Simon MI. (1988). G protein multiplicity in eukaryotic signal transduction systems. Biochemistry. 27: 4957– 4965. 74 Milligan G. (1988). Techniques used in the identification and analysis of function of pertussis toxin-sensitive guanine nucleotide binding proteins. Biochem J. 255: 1– 13. 75 Neer EJ, Clapham DE. (1988). Roles of G protein subunits in transmembrane signalling. Nature. 333: 129– 134. 76 Daly JW, Padgett W, Nimitkitpaisan Y, Creveling CR, Cantacuzene D, Kirk KL. (1980). Fluoronorepinephrine: specific agonists for the activation of α and β adrenergic sensitive cyclic AMP-generating systems in brain slices. J Pharmacol Exp Ther. 212: 382– 389. 77 Nabika T, Yamori Y, Lovenberg W, Endo J. (1985). Angiotensin II and phorbol ester enhance isoproterenol- and vasoactive intestinal peptide (VlP)-induced cyclic AMP accumulation in vascular smooth muscle cells. Biochem Biophys Res Commun. 131: 30– 36. 78 Karbon EW, Shenolikar S, Enna SJ. (1986). Phorbol esters enhance neurotransmitter-stimulated cyclic AMP production in rat brain slices. J Neurochem. 74: 1566– 1575. 79 Sugden D, Vanecek J, Klein DC, Thomas TP, Anderson WB. (1985). Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature. 314: 359– 361. 80 Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, Caron MG. (1987). Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 327: 67– 70. 81 Pang I-H, Sternweis PC. (1990). Purification of unique a subunits of GTP-binding regulatory proteins (G proteins) by affinity chromatography with immobilized βγ subunits. J Biol Chem. 265: 18707– 18712. 82 Blank JL, Ross AH, Exton JH. (1991). Purification and characterization of two G-proteins that activate the β1 isozyme of phosphoinositide-specific phospholipase C. Identification as members of the Gq class. J Biol Chem. 266: 18206– 18216. 83 Fredholm BB, Lindgren E, Lindstrom K, Nordstedt C. (1987). α-Adrenoceptor stimulation, but not muscarinic stimulation, increases cyclic AMP accumulation in brain slices due to protein kinase C mediated enhancement of adenosine receptor effects. Acta Physiol Scand. 131: 543– 551. 84 Houslay MD. (1991). 'Crosstalk': a pivotal role for protein kinase C in modulating relationships between signal transduction pathways. Eur J Biochem. 195: 9– 27. 85 Schaad NC, Magistretti PJ, Schorderet M. (1991). Prostanoids and their role in cell-cell interactions in the central nervous system. Neurochem Int. 18: 303– 322. 86 Etgen AM, Petitti N. (1986). Norepinephrine-stimulated cyclic AMP accumulation in rat hypothalamic slices: effects of estrous cycle and ovarian steroids. Brain Res. 375: 385– 390. 87 Petitti N, Etgen AM. (1990). α1-Adrenoceptor augmentation of β-stimulated cAMP formation is enhanced by estrogen and reduced by progesterone in rat hypothalamic slices. J Neurosci. 10: 2842– 2849. 88 Etgen AM, Petitti N. (1987). Mediation of norepinephrine-stimulated cyclic AMP accumulation by adrenergic receptors in hypothalamic and preoptic area slices: effects of estradiol. J Neurochem. 49: 1732– 1739. 89 Stone EA, Herrera AS. (1986). α-Adrenergic modulation of cyclic AMP formation in rat CNS: highest level in olfactory bulb. Brain Res. 384: 401– 403. 90 Pilc A, Enna SJ. (1985). Synergistic action between α- and β-adrenoreceptors in rat brain cortical slices: possible site for antidepress-ant drug action. Life Sci. 37: 1183– 1194. 91 Robinson JP, Kendall DA. (1989). No role for phospholipase A2 and protein kinase C in the potentiation by α-adrenoceptors of β-adrenoceptor-mediated cyclic AMP formation in rat brain. J Neurochem. 53: 542– 550. 92 Daly JW, Padgett CR, Creveling D, Cantacuzene D, Kirk KL. (1981). Cyclic AMP-generating systems: regional differences in activation by adrenergic receptors in rat brain. J Neurosci. 1: 49– 59. 93 Petitti N, Etgen AM. (1991). Protein kinase C and phospholipase C mediate α1 and β-adrenoceptor intercommunication in rat hypothal-amic slices. J Neurochem. 56: 628– 635. 94 Petitti N, Etgen AM. (1989). Progesterone depression of norepin-ephrine-stimulated cAMP accumulation in hypothalamic slices. Mol Brain Res. 5: 109– 119. 95 Shackleford DP jr, McConnaughey MM, Lams SG. (1988). The effects of estradiol and mestranol on alpha-adrenoreceptors in select regions of the rat brain. Brain Res Bull. 21: 329– 333. 96 Johnson AE, Nock B, McEwen BS, Feder HH. (1985). Estradiol modulation of α2-noradrenergic receptors in guinea pig brain assessed by tritium-sensitive film autoradiography. Brain Res. 336: 153– 159. 97 Weiland NG, Wise PM. (1989). Diurnal rhythmicity of beta-1- and beta-2-adrenergic receptors in ovariectomized, ovariectomized estradiol-treated and proestrous rats. Neuroendocrinology. 50: 655– 662. 98 Wagner RH, Davies JN. (1980). Decreased β-adrenergic responses in the female rat brain are eliminated by ovariectomy: correlation of [3H]dihydroalprenolol binding and catecholamine stimulated cAMP levels. Brain Res. 201: 235– 239. 99 Wagner RH, Crutcher KA, Davies JN. (1979). Chronic estrogen treatment decreases β-adrenergic responses in rat cerebral cortex. Brain Res. 171: 147– 151. 100 Wilkerson M, Herdon H, Pearce M, Wilson C. (1979). Radioligand binding studies on hypothalamic noradrenergic receptors during the estrous cycle or after steroid injection in ovariectomized rats. Brain Res. 168: 652– 655. 101 Biegon A, Reches A, Snyder L, McEwen BS. (1983). Serotonergic and noradrenergic receptors in the rat brain: modulation by chronic exposure to ovarian hormones. Life Sci. 32: 2015– 2021. 102 Etgen AM, Karkanias GB. (1990). Estradiol regulates the number of α1but not β or α2 noradrenergic receptors in hypothalamus of female rats. Neurochem Int. 16: 1– 9. 103 Weiland NG, Wise PM. (1987). Estrogen alters the diurnal rhythm of α1-adrenergic receptor densities in selected brain regions. Endocrinology. 121: 1751– 1758. 104 Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK. (1988). Molecular cloning and expression of the cDNA for the hamster α1-adrenergic receptor. Proc Natl Acad Sci USA. 85: 7159– 7163. 105 Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG. (1991). Molecular cloning and expression of the cDNA for the α1A-adrenergic receptor. J Biol Chem. 266: 6365– 6369. 106 Han C, Abel PW, Minneman KP. (1987). Heterogeneity of α1 adrenergic receptors revealed by chloroethylclonidine. Mol Pharmacol. 32: 505– 510. 107 Minneman KP, Han C, Abel PW. (1988). Comparison of α1-adrenergic receptor subtypes distinguished by chloroethylclonidine and WB 4101. Mol Pharmacol. 33: 509– 514. 108 Johnson RD, Minneman KP. (1986). Characterization of α1-adreno-ceptors which increase cyclic AMP accumulation in rat cerebral cortex. Eur J Pharmacol. 129: 293– 305. 109 Johnson RD, Minneman KP. (1987). Differentiation of α1-adrenergic receptors linked to phosphatidylinositol turnover and cyclic AMP accumulation in rat brain. Mol Pharmacol. 31: 239– 246. 110 Blendy JA, Grimm LJ, Perry DC, West-Johnsrud L, Kellar KJ. (1990). Electroconvulsive shock differentially increases binding to alpha-1 adrenergic receptor subtypes in discrete regions of rat brain. J Neurosci. 10: 2580– 2586. 111 Petitti N, Etgen AM. (1991). Estradiol regulates α1B-adrenergic receptors which potentiate cAMP formation in the hypothalamus. Soc Neurosci Abstr. 17: 83. 112 Maus M, Bertrand P, Drouva S, Rasolonjanahary R, Kordon C, Glowinski J, Premont J, Enjalbert A. (1989). Differential modulation of Dl and D2 dopamine-sensitive adenylate cyclases by 17β-estradiol in cultured striatal neurons and anterior pituitary cells. J Neurochem. 52: 410– 418. 113 Maus M, Homburger V, Bockaert J, Glowinski J, Premont J. (1990). Pretreatment of mouse striatal neurons in primary culture with 17β-estradiol enhances the pertussis toxin-catalyzed ADP-ribosylation of Gαo,i protein subunits. J Neurochem. 55: 1244– 1251. 114 Roberts JM, Riemer RK, Bottari SP, Wu YY, Goldfien A. (1989). Hormonal regulation of myometrial adrenergic response: the receptor and beyond. J Dev Physiol. 11: 125– 134. 115 Kunos G, Ishac EJN. (1987). Mechanism of inverse regulation of alpha;- and beta-adrenergic receptors. Biochem Pharmacol. 36: 1185– 1191. 116 Majewska MD, Harrison NC, Schwartz RD, Barker JL, Paul SM. (1986). Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 232: 1004– 1007. 117 Orchinik M, Murray TF, Moore FL. (1991). A corticosteroid receptor in neuronal membranes. Science. 252: 1848– 1851. 118 Petitti N, Etgen AM. (1992). Progesterone promotes rapid desensit-ization of α1-adrenergic receptor augmentation of cAMP formation in rat hypothalamic slices. Neuroendocrinology. 55: 1– 8. 119 Godeau JF, Schorderet-Slatkine S, Hubert P, Baulieu EE. (1978). Induction of maturation in Xenopus laevis oocytes by a steroid linked to a polymer. Proc Natl Acad Sci USA. 75: 2353– 2357. 120 Ke F-C, Ramirez VD. (1990). Binding of progesterone to nerve cell membranes of rat brain using progesterone conjugated to 125I-bovine serum albumin as a ligand. J Neurochem. 54: 467– 472. 121 Ke F-C, Ramirez VD. (1987). Membrane mechanism mediates progesterone stimulatory effect on LHRH release from superfused rat hypothalami in vitro. Neuroendocrinology. 45: 514– 517. 122 Frye CA, Mermelstein PG, DeBold JF. (1990). Progesterone immobilized on BSA implanted in the VTA but not the hypothalamus facilitates sexual receptivity in hamsters. Soc Neurosci Abstr. 16: 764. 123 Etgen AM. (1990). Intrahypothalamic implants of noradrenergic antagonists disrupt lordosis behavior in female rats. Physiol Behav. 48: 31– 36. 124 Nock B, Feder HH. (1979). α1-Noradrenergic transmission and female sexual behavior of guinea pigs. Brain Res. 166: 369– 380. 125 Thornton JE, Goy RW, McEwen BS, Feder HH. (1989). Alpha 1 noradrenergic antagonism decreases hormonally-induced and hor-monally-independent lordosis. Pharmacol Biochem Behav. 32: 421– 424. 126 Vincent PA, Feder HH. (1988). Alpha-1- and alpha-2-noradrenergic receptors modulate lordosis behavior in female guinea pigs. Neuroendocrinology. 48: 477– 481. 127 Kow L-M, Weesner GD, Pfaff DW. (1991). α1-Adrenergic agonists act on ventromedial hypothalamus to cause neuronal excitation and lordosis facilitation. Soc Neurosci Abstr. 17: 498. 128 Davis BL, Manzanares J, Lookingland KJ, Moore KE, Clemens LG. (1991). Noradrenergic innervation to the VMN or MPN is not necessary for lordosis. Pharmacol Biochem Behav. 39: 737– 742. 129 Malta GA, McPherson GA, Raper C. (1979). Comparison of pre-junctional α-adrenoreceptors at the neuromuscular junction with vascular post-junctional α-receptors in cat skeletal muscle. Br J Pharmacol. 65: 249– 256. 130 Mendelson SD, Gorzalka BB. (1988). Stimulation of β-adrenoreceptors inhibits lordosis behavior in the female rat. Pharmacol Biochem Behav. 29: 717– 723. 131 Han C, Abel PW, Minneman KP. (1987). α1-Adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle. Nature. 329: 333– 335. 132 Tsujimoto G, Tsujimoto A, Suzuki E, Hashimoto K. (1989). Glyco-gen phosphorylase activation by two different α1-adrenergic receptor subtypes: methoxamine selectively stimulates a putative α1-adrenergic receptor subtype (α1A) that couples with Ca2+ influx. Mol Pharmacol. 36: 166– 176. 133 Burch RM. (1989). G protein regulation of phospholipase A2. Mol Neurobiol. 3: 155– 171. 134 Mobbs CV, Kaplitt M, Kow L-M, Pfaff DW. (1991). PLC-α: a common mediator of the action of estrogen and other hormones Mol Cell Endocrinol. 80: C187– C191. 135 McEwen BS, Biegon A, Davis PG, Krey LC, Luine VN, McGinnis MY, Paden CM, Parsons B, Rainbow TC. (1982). Steroid hormones: humoral signals which alter brain cell properties and functions. Recent Prog Horm Res. 38: 41– 92. 136 Waterhouse BD, Sessler FM, Cheng J-T, Woodward DJ, Azizi SA, Moises HC. (1988). New evidence for a gating action of norepinephrine in central neuronal circuits of mammalian brain. Brain Res Bull. 21: 425– 432. 137 Condon TP, Ronnekleiv OK, Kelly MJ. (1989). Estrogen modulation of the α-1-adrenergic response of hypothalamic neurons. Neuroendocrin-ology. 10: 51– 58. 138 Kim YI, Dudley CA, Moss RL. (1988). Al-noradrenergic action on medial preoptic-medial septal neurons: a neuropharmacological study. Synapse. 2: 494– 507. 139 Kow L-M, Pfaff DW. (1987). Responses of ventromedial hypothalamic neurons in vitro to norepinephrine: dependence on dose and receptor type. Brain Res. 413: 220– 228. 140 Sessler FM, Cheng J-T, Waterhouse BD. (1988). Electrophysiological actions of norepinephrine in rat lateral hypothalamus. I. Norepin-ephrine-induced modulation of LH neuronal responsiveness to afferent synaptic inputs and putative neurotransmitters. Brain Res. 446: 77– 89. 141 Cheng J-T, Sessler FM, Azizi SA, Chapin JK, Waterhouse BD. (1988). Electrophysiological actions of norepinephrine in rat lateral hypothalamus. II. An in vitro study of the effects of iontophoretically applied norepinephrine on LH neuronal responses to γ-aminobutyric acid (GABA). Brain Res. 446: 90– 105. 142 Herbison AE, Heavens RP, Dyer RG. (1990). Oestrogen modulation of excitatory Al noradrenergic input to rat medial preoptic area neurones demonstrated by microdialysis. Neuroendocrinology. 52: 161– 168. 143 Waymire JC, Bjur B, Weiner N. (1971). Assay of tyrosine hydroxylase by coupled decarboxylation of DOPA formed from l-14C-L-tyrosine. Anal Biochem. 43: 588– 600. Citing Literature Volume4, Issue3June 1992Pages 255-271 ReferencesRelatedInformation
Referência(s)