Artigo Acesso aberto Revisado por pares

Introns within Ribosomal Protein Genes Regulate the Production and Function of Yeast Ribosomes

2011; Cell Press; Volume: 147; Issue: 2 Linguagem: Inglês

10.1016/j.cell.2011.08.044

ISSN

1097-4172

Autores

Julie Parenteau, Mathieu Durand, Geneviève Morin, Jules Gagnon, Jean‐François Lucier, Raymund J. Wellinger, Benoı̂t Chabot, Sherif Abou Elela,

Tópico(s)

Fungal and yeast genetics research

Resumo

In budding yeast, the most abundantly spliced pre-mRNAs encode ribosomal proteins (RPs). To investigate the contribution of splicing to ribosome production and function, we systematically eliminated introns from all RP genes to evaluate their impact on RNA expression, pre-rRNA processing, cell growth, and response to stress. The majority of introns were required for optimal cell fitness or growth under stress. Most introns are found in duplicated RP genes, and surprisingly, in the majority of cases, deleting the intron from one gene copy affected the expression of the other in a nonreciprocal manner. Consistently, 70% of all duplicated genes were asymmetrically expressed, and both introns and gene deletions displayed copy-specific phenotypic effects. Together, our results indicate that splicing in yeast RP genes mediates intergene regulation and implicate the expression ratio of duplicated RP genes in modulating ribosome function.

Referência(s)
Altmetric
PlumX