A Synthesis‐Driven Structure Revision of Berkelic Acid Methyl Ester
2008; Wiley; Volume: 47; Issue: 44 Linguagem: Inglês
10.1002/anie.200803339
ISSN1521-3773
AutoresPhilipp Buchgraber, Thomas N. Snaddon, Conny Wirtz, Richard Mynott, Richard Goddard, Alois Fürstner,
Tópico(s)Microbial Natural Products and Biosynthesis
ResumoAngewandte Chemie International EditionVolume 47, Issue 44 p. 8450-8454 Communication A Synthesis-Driven Structure Revision of Berkelic Acid Methyl Ester† Philipp Buchgraber Dr., Philipp Buchgraber Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorThomas N. Snaddon Dr., Thomas N. Snaddon Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorConny Wirtz, Conny Wirtz Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorRichard Mynott Dr., Richard Mynott Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorRichard Goddard Dr., Richard Goddard Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorAlois Fürstner Prof., Alois Fürstner Prof. [email protected] Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this author Philipp Buchgraber Dr., Philipp Buchgraber Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorThomas N. Snaddon Dr., Thomas N. Snaddon Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorConny Wirtz, Conny Wirtz Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorRichard Mynott Dr., Richard Mynott Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorRichard Goddard Dr., Richard Goddard Dr. Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this authorAlois Fürstner Prof., Alois Fürstner Prof. [email protected] Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr (Germany), Fax: (+49) 208-306-2994Search for more papers by this author First published: 15 October 2008 https://doi.org/10.1002/anie.200803339Citations: 63 † Generous financial support by the MPG and the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Prof. A. A. Stierle and Prof. D. B. Stierle, Montana Tech of the University of Montana, for providing copies of the original spectra, Dr. C. W. Lehmann for solving the X-ray structure of 27, the ANKA Angstroemquelle Karlsruhe for the provision of beamtime, and A. Deege and his team for expert HPLC support. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Graphical Abstract A subtle difference: A single step suffices to transform a linear precursor into the chromane spiroketal core of the metalloproteinase-3 inhibitor berkelic acid by an acid-catalyzed deprotection/Michael addition/acetalization cascade. This efficient route resulted from the realization that the originally proposed structure is neither thermodynamically nor kinetically favored and has led to revision of the structure (denoted in red). References 1C. E. Brinckerhoff, L. M. Matrisian, Nat. Rev. Mol. Cell Biol. 2002, 3, 207–214. 10.1038/nrm763 CASPubMedWeb of Science®Google Scholar 2 2a"Inhibition of Matrix Metalloproteinases: Therapeutic Applications": Annales of the New York Academy of Science, Vol. 878 (Eds.: ), Blackwell, Oxford, 1999; Google Scholar 2bH. Matter, M. Schudok, Curr. Opin. Drug Discovery Dev. 2004, 7, 513–535; CASPubMedWeb of Science®Google Scholar 2cM. Whittaker, C. D. Floyd, P. Brown, A. J. H. Gearing, Chem. Rev. 1999, 99, 2735–2776; 10.1021/cr9804543 CASPubMedWeb of Science®Google Scholar 2dC. M. Overall, O. Kleifeld, Nat. Rev. Cancer 2006, 6, 227–239. 10.1038/nrc1821 CASPubMedWeb of Science®Google Scholar 3A. A. Stierle, D. B. Stierle, K. Kelly, J. Org. Chem. 2006, 71, 5357–5360. 10.1021/jo060018d CASPubMedWeb of Science®Google Scholar 4Moreover, berkelic acid was reported to show an appreciable inhibitory effect against caspase-1 (GI50=0.098 mM), a cysteine protease playing a key mediator role in inflammation; for a review see: T. Ghayur, S. Banerjee, M. Hugunin, D. Butler, L. Herzog, A. Carter, L. Quintal, L. Sekut, R. Talanian, M. Paskind, W. Wong, R. Kamen, D. Tracey, H. Allen, Nature 1997, 386, 619–623. 10.1038/386619a0 CASPubMedWeb of Science®Google Scholar 5J. Zhou, B. B. Snider, Org. Lett. 2007, 9, 2071–2074. 10.1021/ol0704338 CASPubMedWeb of Science®Google Scholar 6aM. A. Marsini, Y. Huang, C. C. Lindsey, K.-L. Wu, T. R. R. Pettus, Org. Lett. 2008, 10, 1477–1480; 10.1021/ol8003244 CASPubMedWeb of Science®Google Scholar 6bY. Huang, T. R. R. Pettus, Synlett 2008, 1353–1356. CASPubMedWeb of Science®Google Scholar 7For general reviews on spiroacetals, see: Google Scholar 7aF. Perron, K. F. Albizati, Chem. Rev. 1989, 89, 1617–1661; 10.1021/cr00097a015 CASWeb of Science®Google Scholar 7bJ. E. Aho, P. M. Pihko, T. K. Rissa, Chem. Rev. 2005, 105, 4406–4440; 10.1021/cr050559n CASPubMedWeb of Science®Google Scholar 7cfor recent studies on spiroketals from our research group, see: A. Fürstner, M. D. B. Fenster, B. Fasching, C. Godbout, K. Radkowski, Angew. Chem. 2006, 118, 5632–5636; 10.1002/ange.200601654 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5506–5510; 10.1002/anie.200601654 CASPubMedWeb of Science®Google Scholar 7dA. Fürstner, M. D. B. Fenster, B. Fasching, C. Godbout, K. Radkowski, Angew. Chem. 2006, 118, 5636–5641; 10.1002/ange.200601655 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 5510–5515. 10.1002/anie.200601655 CASPubMedWeb of Science®Google Scholar 8Conveniently prepared by hydrolytic kinetic resolution (HKR); see: S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307–1315. 10.1021/ja016737l CASPubMedWeb of Science®Google Scholar 9T. Rödel, H. Gerlach, Liebigs Ann. Chem. 1997, 213–216. The large-scale preparation of 3,5-bis(benzyloxy)-1-bromobenzene is described in the Supporting Information. 10.1002/jlac.199719970131 Web of Science®Google Scholar 10T. V. Hansen, L. Skattebøl, Org. Synth. 2005, 82, 64–67. 10.15227/orgsyn.082.0064 CASWeb of Science®Google Scholar 11 11aR. E. Ireland, R. H. Mueller, J. Am. Chem. Soc. 1972, 94, 5897–5898; 10.1021/ja00771a062 CASWeb of Science®Google Scholar 11bR. E. Ireland, P. Wipf, J.-N. Xiang, J. Org. Chem. 1991, 56, 3572–3582; 10.1021/jo00011a023 CASWeb of Science®Google Scholar 11creviews: A. M. Martín Castro, Chem. Rev. 2004, 104, 2939–3002; 10.1021/cr020703u CASPubMedWeb of Science®Google Scholar 11dY. Chai, S. Hong, H. A. Lindsay, C. McFarland, M. C. McIntosh, Tetrahedron 2002, 58, 2905–2928. 10.1016/S0040-4020(02)00164-3 CASWeb of Science®Google Scholar 12Y. Ichikawa, K. Tsuboi, M. Isobe, J. Chem. Soc. Perkin Trans. 1 1994, 2791–2796. 10.1039/p19940002791 CASWeb of Science®Google Scholar 13 13aA. Français, O. Bedel, W. Picoul, A. Meddour, J. Courtieu, A. Haudrechy, Tetrahedron: Asymmetry 2005, 16, 1141–1155; 10.1016/j.tetasy.2004.12.029 CASWeb of Science®Google Scholar 13bW. Picoul, R. Urchegui, A. Haudrechy, Y. Langlois, Tetrahedron Lett. 1999, 40, 4797–4800. 10.1016/S0040-4039(99)00912-0 CASWeb of Science®Google Scholar 14The relative configuration was unambiguously assigned after conversion of the esters into the corresponding lactones and was later confirmed by the X-ray structure of compounds 19 and 27. Details will be reported in a forthcoming full paper. Google Scholar 15S. Nahm, S. M. Weinreb, Tetrahedron Lett. 1981, 22, 3815–3818. 10.1016/S0040-4039(01)91316-4 CASWeb of Science®Google Scholar 16Anisotropic displacement parameters are drawn at the 50 % probability level and hydrogen atoms are omitted for clarity. CCDC 694490 (19) and 693829 (27) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Short summaries of the crystallographic data can also be found in the Supporting Information. Google Scholar 17It is important to note that the model compounds reported by Zhou and Snider lacked this decisive methyl branch, which may explain the misleading outcome of the study; see Ref. [5]. Google Scholar 18P. Renaud, M. Hürzeler, D. Seebach, Helv. Chim. Acta 1987, 70, 292–298. 10.1002/hlca.19870700204 CASWeb of Science®Google Scholar 19Other oxidants were found to degrade the electron-rich arene ring. For precedence for the ortho-methylthiomethylation of a phenol with DMSO and acid chlorides, see: K. Sato, S. Inoue, K. Ozawa, M. Tazaki, J. Chem. Soc. Perkin Trans. 1 1984, 2715–2719. 10.1039/p19840002715 CASWeb of Science®Google Scholar 20For other total syntheses from our research group which resulted in the revision/clarification of the originally proposed structures, see: Google Scholar 20aA. Fürstner, K. Radkowski, C. Wirtz, R. Goddard, C. W. Lehmann, R. Mynott, J. Am. Chem. Soc. 2002, 124, 7061–7069; 10.1021/ja020238i CASPubMedWeb of Science®Google Scholar 20bA. Fürstner, M. Albert, J. Mlynarski, M. Matheu, E. DeClercq, J. Am. Chem. Soc. 2003, 125, 13132–13142; 10.1021/ja036521e CASPubMedWeb of Science®Google Scholar 20cA. Fürstner, J. Ruiz-Caro, H. Prinz, H. Waldmann, J. Org. Chem. 2004, 69, 459–467; 10.1021/jo035079f CASPubMedWeb of Science®Google Scholar 20dA. Fürstner, K. Radkowski, H. Peters, Angew. Chem. 2005, 117, 2837–2841; 10.1002/ange.200462215 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 2777–2781; 10.1002/anie.200462215 CASPubMedWeb of Science®Google Scholar 20eA. Fürstner, K. Radkowski, H. Peters, G. Seidel, C. Wirtz, R. Mynott, C. W. Lehmann, Chem. Eur. J. 2007, 13, 1929–1945; 10.1002/chem.200601639 CASPubMedWeb of Science®Google Scholar 20fA. Fürstner, E. K. Heilmann, P. W. Davies, Angew. Chem. 2007, 119, 4844–4847; 10.1002/ange.200700895 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 4760–4763; 10.1002/anie.200700895 CASPubMedWeb of Science®Google Scholar 20gA. Fürstner, O. Larionov, S. Flügge, Angew. Chem. 2007, 119, 5641–5644; 10.1002/ange.200701640 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 5545–5548. 10.1002/anie.200701640 CASPubMedWeb of Science®Google Scholar 21For a review on natural products of mistaken identity, see: K. C. Nicolaou, S. A. Snyder, Angew. Chem. 2005, 117, 1036–1069; 10.1002/ange.200460864 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 1012–1044. 10.1002/anie.200460864 CASPubMedWeb of Science®Google Scholar 22Only the 1H NMR spectrum in CDCl3 has been recorded; we were informed that there is very little of the authentic sample left; supplying material is therefore currently not possible. Google Scholar 23Saponification of 23 b is unselective, with both methyl esters cleaved at similar rates. Google Scholar Citing Literature Volume47, Issue44October 20, 2008Pages 8450-8454 ReferencesRelatedInformation
Referência(s)