Artigo Revisado por pares

Adaptation of Ion Channels in the Microcirculation to Exercise Training

2000; Wiley; Volume: 7; Issue: 1 Linguagem: Inglês

10.1111/j.1549-8719.2000.tb00740.x

ISSN

1549-8719

Autores

Douglas K. Bowles,

Tópico(s)

Nitric Oxide and Endothelin Effects

Resumo

MicrocirculationVolume 7, Issue 1 p. 25-40 Adaptation of Ion Channels in the Microcirculation to Exercise Training DOUGLAS K. BOWLES, Corresponding Author DOUGLAS K. BOWLES Department of Veterinary Biomedical Sciences and Dalton Cardiovascular Research Center University of Missouri, Columbia, MO USAE102 Veterinary Medicine, University of Missouri, Columbia, MO 65211.Search for more papers by this author DOUGLAS K. BOWLES, Corresponding Author DOUGLAS K. BOWLES Department of Veterinary Biomedical Sciences and Dalton Cardiovascular Research Center University of Missouri, Columbia, MO USAE102 Veterinary Medicine, University of Missouri, Columbia, MO 65211.Search for more papers by this author First published: 11 June 2013 https://doi.org/10.1111/j.1549-8719.2000.tb00740.xCitations: 12AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCE 1 (1995). Physical Activity and Cardiovascular Health. NIH Consens Statement Dec 18–20(13): 1–33. Web of Science®Google Scholar 2 Aiello EA, Clément-Chomienne O, Sontag DP, Walsh MP, Cole WC. (1996). Protein kinase C inhibits delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 271: H109–H119. CASPubMedWeb of Science®Google Scholar 3 Aiello EA, Walsh MP, Cole WC. (1995). Phosphorylation by protein kinase A enhances delayed rectifier K+ current in rabbit vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 268: H926–H934. 10.1152/ajpheart.1995.268.2.H926 CASPubMedWeb of Science®Google Scholar 4 Armstrong RB, Delp MD, Goljan EF, Laughlin MH. (1987). Distribution of blood flow in muscles of miniature swine during exercise. J Appl Physiol 62: 1285–1298. 10.1152/jappl.1987.62.3.1285 CASPubMedWeb of Science®Google Scholar 5 Asano M, Masuzawaito K, Matsuda T, Suzuki Y, Oyama H, Shibuya M, Sugita K. (1993). Functional role of charybdotoxin-sensitive K+ channels in the resting state of cerebral, coronary and mesenteric arteries of the dog. J Pharmacol Exp Ther 267: 1277–1285. CASPubMedWeb of Science®Google Scholar 6 Asano M, Nomura Y, Ito K, Uyama Y, Imaizumi Y, Watanabe M. (1995). Increased function of voltage-dependent Ca++ channels and Ca++-activated K+ channels in resting state of femoral arteries from spontaneously hypertensive rats at prehypertensive stage. J Pharmacol Exp Ther 275: 775–783. CASPubMedWeb of Science®Google Scholar 7 Bean BP, Sturek M, Puga A, Hermsmeyer K. (1986). Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Circ Res 59: 229–235. 10.1161/01.RES.59.2.229 CASPubMedWeb of Science®Google Scholar 8 Benham CD, Bolton TB. (1986). Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of the rabbit. J Physiol (Lond) 381: 385–406. 10.1113/jphysiol.1986.sp016333 CASPubMedWeb of Science®Google Scholar 9 Benham CD, Tsien RW. (1988). Noradrenaline modulation of calcium channels in single smooth muscle cells from rabbit ear artery. J Physiol (Lond) 404: 767–784. 10.1113/jphysiol.1988.sp017318 CASPubMedWeb of Science®Google Scholar 10 Bielefeldt K. (1999). Molecular diversity of voltage-sensitive calcium channels in smooth muscle cells. Journal of Laboratory & Clinical Medicine 133(5): 469–477. 10.1016/S0022-2143(99)90024-0 CASPubMedWeb of Science®Google Scholar 11 Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. (1994). Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 368: 850–853. 10.1038/368850a0 CASPubMedWeb of Science®Google Scholar 12 Bolton TB, MacKenzie I, Aaronson PI. (1988). Voltage-dependent calcium channels in smooth muscle cells. J Cardiovasc Pharmacol 12 Suppl. 6: S3–S7. 10.1097/00005344-198812006-00003 PubMedWeb of Science®Google Scholar 13 Bonev AD, Jaggar JH, Rubart M, Nelson MT. (1997). Activators of protein kinase C decrease Ca2+ spark frequency in smooth muscle cells from cerebral arteries. Am J Physiol Cell Physiol 273(6 Pt 1): C2090–C2095. 10.1152/ajpcell.1997.273.6.C2090 CASPubMedWeb of Science®Google Scholar 14 Bowles DK, Hu Q, Laughlin MH, Sturek M. (1997). Heterogeneity of L-type calcium current density in coronary smooth muscle. Am J Physiol Heart Circ Physiol 273(42): H2083–H2089. CASPubMedGoogle Scholar 15 Bowles DK, Hu Q, Laughlin MH, Sturek M. (1998). Exercise training increases L-type calcium current density in coronary smooth muscle. Am J Physiol Heart Circ Physiol 275(44): H2159–H2169. CASPubMedWeb of Science®Google Scholar 16 Bowles DK, Laughlin MH, Sturek M. (1995). Exercise training alters the Ca2+ and contractile responses of coronary arteries to endothelin. J Appl Physiol 78: 1079–1087. 10.1152/jappl.1995.78.3.1079 CASPubMedWeb of Science®Google Scholar 17 Bowles DK, Laughlin MH, Sturek M. (1998). Exercise training increases K+ channel contribution to regulation of coronary arterial tone. J Appl Physiol 84(4): 1225–1233. 10.1152/jappl.1998.84.4.1225 CASPubMedWeb of Science®Google Scholar 18 Brayden JE. (1996). Potassium channels in vascular smooth muscle. Clin Exp Pharmacol Physiol 23: 1069–1076. 10.1111/j.1440-1681.1996.tb01172.x CASPubMedWeb of Science®Google Scholar 19 Brayden JE, Nelson MT. (1992). Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 256: 532–535. 10.1126/science.1373909 CASPubMedWeb of Science®Google Scholar 20 Bülbring E, Tomita T. (1987). Catecholamine action on smooth muscle. Pharmacol Rev 39: 49–96. CASPubMedWeb of Science®Google Scholar 21 Campbell KP, Leung AT, Sharp AH. (1988). The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11: 425–430. 10.1016/0166-2236(88)90193-2 CASPubMedWeb of Science®Google Scholar 22 Chen Q, Cannell M, Van Breemen C. (1992). The superficial buffer barrier in vascular smooth muscle. Can J Physiol Pharmacol 70: 509–514. 10.1139/y92-066 CASPubMedWeb of Science®Google Scholar 23 Chien AJ, Gao T, Perez-Reyes E, Hosey MM. (1998). Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the beta2a subunit. J Biol Chem 273(36): 23590–23597. 10.1074/jbc.273.36.23590 CASPubMedWeb of Science®Google Scholar 24 Chilian WM, Layne SM, Eastham CL, Marcus ML. (1989). Heterogeneous microvascular coronary α-adrenergic vasoconstriction. Circ Res 64: 376–388. 10.1161/01.RES.64.2.376 CASPubMedWeb of Science®Google Scholar 25 Cole WC, Clément-Chomienne O, Aiello EA. (1996). Regulation of 4 aminopyridine-sensitive, delayed rectifier K+ channels in vascular smooth muscle by phosphorylation. Biochem Cell Biol 74: 439–447. 10.1139/o96-048 CASPubMedWeb of Science®Google Scholar 26 Cox RH, Petrou S. (1999). Ca2+ influx inhibits voltage-dependent and augments Ca2+-dependent K+ currents in arterial myocytes. Am J Physiol Cell Physiol 277(46): C51–C63. CASPubMedWeb of Science®Google Scholar 27 Dart C, Standen NB. (1993). Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol (Lond) 471: 767–786. 10.1113/jphysiol.1993.sp019927 CASPubMedWeb of Science®Google Scholar 28 Dart C, Standen NB. (1995). Activation of ATP-dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol (Lond) 483: 29–39. 10.1113/jphysiol.1995.sp020565 CASPubMedWeb of Science®Google Scholar 29 Davidoff AJ, Maki TM, Ellingsen O, Marsh JD. (1997). Expression of calcium channels in adult cardiac myocytes is regulated by calcium. J Molecular Cell Cardiol 29(7): 1791–1803. 10.1006/jmcc.1997.0406 CASPubMedWeb of Science®Google Scholar 30 Davis MJ. (1993). Myogenic response gradient in an arteriolar network. Am J Physiol Heart Circ Physiol 264: H2168–H2179. CASPubMedWeb of Science®Google Scholar 31 Davis MJ, Donovitz JA, Hood JD. (1992). Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol Cell Physiol 262: C1083–C1088. 10.1152/ajpcell.1992.262.4.C1083 CASPubMedWeb of Science®Google Scholar 32 De Jongh KS, Murphy BJ, Colvin AA, Hell JW, Takahashi M, Catterall WA. (1996). Specific phosphorylation of a site in the full-length form of the α1 subunit of the cardiac L-type calcium channel by adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochem 35: 10392–10402. 10.1021/bi953023c PubMedWeb of Science®Google Scholar 33 DeLorme EM, Rabe CS, McGee RJ. (1988). Regulation of the number of functional voltage-sensitive Ca++ channels on PC12 cells by chronic changes in membrane potential. J Pharmacol Exp Ther 244: 838–843. CASPubMedWeb of Science®Google Scholar 34 Dodd-o JM, Gwirtz PA. (1996). Coronary α1-adrenergic constrictor tone varies with intensity of exercise. Med Sci Sports Exerc 28: 62–71. 10.1097/00005768-199601000-00015 CASPubMedWeb of Science®Google Scholar 35 Ekelund LG, Haskell WL, Johnson JL, Whaley FS, Criqui, MH, Sheps DS. (1988). Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men. The Lipid Research Clinics Mortality Follow-up Study. N Engl J Med 319(21): 1379–1384. 10.1056/NEJM198811243192104 PubMedWeb of Science®Google Scholar 36 Fleischmann BK, Murray RK, Kotlikoff MI. (1994). Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proceedings of the Natl Acad Sci USA 91: 11914–11918. 10.1073/pnas.91.25.11914 CASPubMedWeb of Science®Google Scholar 37 Fomina AF, Levitan ES. (1997). Control of Ca2+ channel current and exocytosis in rat lactotrophs by basally active protein kinase C and calcineurin. Neuroscience 78(2): 523–531. 10.1016/S0306-4522(96)00571-4 CASPubMedWeb of Science®Google Scholar 38 Fomina AF, Levitan ES, Takimoto K. (1996). Dexamethasone rapidly increases calcium channel subunit messenger RNA expression and high voltage-activated calcium current in clonal pituitary cells. Neuroscience 72(3): 857–862. 10.1016/0306-4522(95)00580-3 CASPubMedWeb of Science®Google Scholar 39 Franco-Obregon A, Lopez-Barneo J. (1996). Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol (Lond) 491(2): 511–518. 10.1113/jphysiol.1996.sp021235 CASPubMedGoogle Scholar 40 Fukumitsu T, Hayashi H, Tokuno H, Tomita T. (1990). Increase in calcium channel current by β-adrenoceptor agonists in single smooth muscle cells isolated from porcine coronary artery. Br J Pharmacol 100: 593–599. 10.1111/j.1476-5381.1990.tb15852.x CASPubMedWeb of Science®Google Scholar 41 Ganitkevich VY, Isenberg G. (1990). Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea-pig coronary artery. J Physiol (Lond) 426: 19–42. 10.1113/jphysiol.1990.sp018125 PubMedWeb of Science®Google Scholar 42 Ganitkevich VY, Isenberg G. (1996). Dissociation of subsarcolemmal from global cytosolic [Ca2+] in myocytes from guinea-pig coronary artery. J Physiol (Lond) 490: 305–318. 10.1113/jphysiol.1996.sp021145 CASPubMedWeb of Science®Google Scholar 43 Gelband CH, Hume JR. (1995). [Ca2+]i inhibition of K+ channels in canine renal artery: Novel mechanism for agonist-induced membrane depolarization. Circ Res 77: 121–130. 10.1161/01.RES.77.1.121 CASPubMedWeb of Science®Google Scholar 44 Gelband CH, Ishikawa T, Post JM, Keef KD, Hume JR. (1993). Intracellular divalent cations block smooth muscle K+ channels. Circ Res 73: 24–34. 10.1161/01.RES.73.1.24 CASPubMedWeb of Science®Google Scholar 45 Gerster U, Neuhuber B, Groschner K, Striessnig J, Flucher BE. (1999). Current modulation and membrane targeting of the calcium channel alpha(1c) Subunit are independent functions of the beta subunit. Journal of Physiology-London 517(2): 353–368. 10.1111/j.1469-7793.1999.0353t.x CASPubMedWeb of Science®Google Scholar 46 Groschner K, Schuhmann K, Mieskes G, Baumgartner W, Romanin C. (1996). A type 2A phosphatase-sensitive phosphorylation site controls modal gating of L-type Ca2+ channels in human vascular smooth-muscle cells. Biochem J 318: 513–517. 10.1042/bj3180513 CASPubMedWeb of Science®Google Scholar 47 Guia A, Wan X, Courtemanche M, Leblanc N. (1999). Local Ca2+ entry through L-type Ca2+ channels activates Ca2+-dependent K+ channels in rabbit coronary myocytes. Circ Res 84: 1032–1042. 10.1161/01.RES.84.9.1032 CASPubMedWeb of Science®Google Scholar 48 Haller H, Lindschau C, Quass P, Distler A, Luft FC. (1995). Differentiation of vascular smooth muscle cells and the regulation of protein kinase C-α. Circ Res 76: 21–29. 10.1161/01.RES.76.1.21 CASPubMedWeb of Science®Google Scholar 49 Haskell WL, Sims C, Myll J, Bortz WM, St. Goar FG, Alderman EL. (1993). Coronary artery size and dilating capacity in ultradistance runners. Circulation 87: 1076–1082. 10.1161/01.CIR.87.4.1076 CASPubMedWeb of Science®Google Scholar 50 Hill MA, Davis MJ, Song J, Zou H. (1996). Calcium dependence of indolactam-mediated contractions in resistance vessels. J Pharmacol Exp Ther 276: 867–874. CASPubMedWeb of Science®Google Scholar 51 Hille B. (1984). Ionic Channels of Excitable Membranes. Sunderland: Sinauer. Google Scholar 52 Hosey MM, Chien AJ, Puri TS. (1996). Structure and regulation of L-type calcium channels - A current assessment of the properties and roles of channel subunits. Trends Cardiovasc Med 6: 265–273. 10.1016/S1050-1738(96)00109-0 CASPubMedWeb of Science®Google Scholar 53 Hughes AD. (1995). Calcium channels in vascular smooth muscle cells. J Vasc Res 32: 353–370. 10.1159/000159111 CASPubMedWeb of Science®Google Scholar 54 Iijima K, Lin L, Nasjletti A, Goligorsky MS. (1991). Intracellular ramification of endothelin signal. Am J Physiol Cell Physiol 260: C982–C992. 10.1152/ajpcell.1991.260.5.C982 CASPubMedWeb of Science®Google Scholar 55 Inoue Y, Oike M, Nakao K, Kitamura K, Kuriyama H. (1990). Endothelin augments unitary calcium channel currents on the smooth muscle cell membrane of guinea-pig portal vein. J Physiol (Lond) 423: 171–191. 10.1113/jphysiol.1990.sp018017 CASPubMedWeb of Science®Google Scholar 56 Ishikawa T, Hume JR, Keef KD. (1993). Regulation of Ca channels by cAMP and cGMP in vascular smooth muscle cells. Circ Res 73: 1128–1137. 10.1161/01.RES.73.6.1128 CASPubMedWeb of Science®Google Scholar 57 Ishizaka H, Kuo L. (1996). Acidosis-induced coronary arteriolar dilation is mediated by ATP-sensitive potassium channels in vascular smooth muscle. Circ Res 78: 50–57. 10.1161/01.RES.78.1.50 CASPubMedWeb of Science®Google Scholar 58 Izzard AS, Bund SJ, Heagerty AM. (1996). Myogenic tone in mesenteric arteries from spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 270: H1–H6. CASPubMedWeb of Science®Google Scholar 59 Jackson WF. (1998). Potassium channels and regulation of the microcirculation. Microcirculation-London 5(2–3): 85–90. 10.1111/j.1549-8719.1998.tb00057.x CASPubMedWeb of Science®Google Scholar 60 Jackson WF, Blair KL. (1998). Characterization and function of Ca2+-activated K+ channels in arteriolar muscle cells. Am J Physiol Heart Circ Physiol 43(1): H27–34. Google Scholar 61 Jones CJ, Kuo L, Davis MJ, Chilian WM. (1993). Distribution and control of coronary microvascular resistance. Advances in Experimental Medicine and Biology 346: 181–188. 10.1007/978-1-4615-2946-0_17 CASPubMedWeb of Science®Google Scholar 62 Jones CJH, Kuo L, Davis MJ, Chilian WM. (1995). Regulation of coronary blood flow: Coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 29: 558–596. Google Scholar 63 Jones CJH, Kuo L, Davis MJ, DeFily DV, Chilian WM. (1995). Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation 91: 1807–1813. 10.1161/01.CIR.91.6.1807 CASPubMedWeb of Science®Google Scholar 64 Kaczorowski GJ, Knaus HG, Leonard RJ, McManus OB, Garcia ML. (1996). High-conductance calcium-activated potassium channels; Structure, pharmacology, and function. J Bioenerg Biomembr 28: 255–267. 10.1007/BF02110699 CASPubMedWeb of Science®Google Scholar 65 Knot HJ, Nelson MT. (1995). Regulation of membrane potential and diameter by voltage-dependent K+ channels in rabbit myogenic cerebral arteries. Am J Physiol Heart Circ Physiol 269: H348–H355. 10.1152/ajpheart.1995.269.1.H348 CASPubMedWeb of Science®Google Scholar 66 Knot HJ, Nelson MT. (1998). Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol (Lond) 508(Pt 1): 199–209. 10.1111/j.1469-7793.1998.199br.x CASPubMedWeb of Science®Google Scholar 67 Knot HJ, Standen NB, Nelson MT. (1998). Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels. J Physiol (Lond) 508(Pt 1): 211–221. 10.1111/j.1469-7793.1998.211br.x CASPubMedWeb of Science®Google Scholar 68 Knot HJ, Zimmermann PA, Nelson MT. (1996). Extracellular K+-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K+ channels. J Physiol (Lond) 492: 419–430. 10.1113/jphysiol.1996.sp021318 CASPubMedWeb of Science®Google Scholar 69 Koh SD, Sanders KM. (1996). Modulation of Ca2+ current in canine colonic myocytes by cyclic nucleotide-dependent mechanisms. Am J Physiol Cell Physiol 271: C794–C803. CASPubMedWeb of Science®Google Scholar 70 Koh SD, Sanders KM, Carl A. (1996). Regulation of smooth muscle delayed rectifier K+ channels by protein kinase A. Pflugers Arch 432: 401–412. 10.1007/s004240050151 CASPubMedWeb of Science®Google Scholar 71 Koller A, Huang A, Sun D, Kaley G. (1995). Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles: Role of endothelial nitric oxide and prostaglandins. Circ Res 76: 544–550. 10.1161/01.RES.76.4.544 CASPubMedWeb of Science®Google Scholar 72 Korzick DH, Thorne PK, Bowles DK, et al. (1999). Enhanced myogenic constriction by exercise training in porcine coronary resistance arteries is mediated by PKC-dependent mechanisms. Med Sci Sports Exerc 31:(5) S52 (Abstract). 10.1097/00005768-199905001-00075 Google Scholar 73 Kume H, Takai A, Tokuno H, Tomita T. (1989). Regulation of Ca2+-dependent K+-channel activity in tracheal myocytes by phosphorylation. Nature 341: 152–154. 10.1038/341152a0 CASPubMedWeb of Science®Google Scholar 74 Kuo L, Davis MJ, Cannon MS, Chilian WM. (1992). Pathophysiological consequences of atherosclerosis extend into the coronary microcirculation. Restoration of endothelium-dependent responses by L-Arginine. Circ Res 70: 465–476. 10.1161/01.RES.70.3.465 CASPubMedWeb of Science®Google Scholar 75 Kuo L, Davis MJ, Chilian WM. (1995). Longitudinal gradients for endothelium-dependent and -independent vascular responses in the coronary microcirculation. Circulation 92: 518–525. 10.1161/01.CIR.92.3.518 CASPubMedWeb of Science®Google Scholar 76 Lash JM. (1998). Training-induced alterations in contractile function and excitation-contraction coupling in vascular smooth muscle [Review]. Med Sci Sports Exerc 30(1): 60–66. 10.1097/00005768-199801000-00009 CASPubMedWeb of Science®Google Scholar 77 Laughlin MH. (1994). Effects of exercise training on coronary circulation: introduction. Med Sci Sports Exerc 26: 1226–1229. 10.1249/00005768-199410000-00008 CASPubMedWeb of Science®Google Scholar 78 Laughlin MH, McAllister RM. (1992). Exercise training-induced coronary vascular adaptation. J Appl Physiol 73: 2209–2225. 10.1152/jappl.1992.73.6.2209 CASPubMedWeb of Science®Google Scholar 79 Laughlin MH, Oltman CL, Bowles DK. (1998). Exercise training-induced adaptations in the coronary circulation. Med Sci Sports Exerc 30(3): 352–360. 10.1097/00005768-199803000-00004 CASPubMedWeb of Science®Google Scholar 80 Leblanc N, Wan X, Leung PM. (1994). Physiological role of Ca2+-activated and voltage-dependent K+ current in rabbit coronary myocytes. Am J Physiol Cell Physiol 266: C1523–C1537. 10.1152/ajpcell.1994.266.6.C1523 CASPubMedWeb of Science®Google Scholar 81 Lee M-Y, Bang H-W, Lim I-J, Uhm D-Y, Rhee S-D. (1994). Modulation of large conductance calcium-activated K+ channel by membrane-delimited protein kinase and phosphatase activities. Pflugers Archiv European Journal of Physiology 429: 150–152. 10.1007/BF02584044 CASPubMedWeb of Science®Google Scholar 82 Marrion NV, Tavalin SJ. (1998). Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395(6705): 900–905. 10.1038/27674 CASPubMedWeb of Science®Google Scholar 83 Matsuda JJ, Volk KA, Shibata EF. (1990). Calcium currents in isolated rabbit coronary arterial smooth muscle myocytes. J Physiol (Lond) 427: 657–680. 10.1113/jphysiol.1990.sp018192 CASPubMedWeb of Science®Google Scholar 84 McKirnan MD, White FC, Guth BD. (1986). Cardiovascular and metabolic responses to acute and chronic exercise in swine. In: Swine in Biomedical Research. ( ME Tumbleson, Ed.) New York: Plenum Press. 1379–1394. Google Scholar 85 Meininger GA, Davis MJ. (1992). Cellular mechanisms involved in the vascular myogenic response. Am J Physiol Heart Circ Physiol 263: H647–H659. 10.1152/ajpheart.1992.263.3.H647 CASPubMedWeb of Science®Google Scholar 86 Michelakis E, Tewari K, Simard JM. (1994). Calcium channels in smooth muscle cells from cerebral precapillary arterioles activate at more negative potentials than those from basilar artery. Pflugers Arch-Eur J Physiol 426: 459–461. 10.1007/BF00388311 CASPubMedWeb of Science®Google Scholar 87 Muller JM, Myers PR, Laughlin MH. (1993). Exercise training alters myogenic responses in porcine coronary resistance arteries. J Appl Physiol 75: 2677–2682. 10.1152/jappl.1993.75.6.2677 CASPubMedWeb of Science®Google Scholar 88 Muller JM, Myers PR, Laughlin MH. (1994). Vasodilator responses of coronary resistance arteries of exercise-trained pigs. Circulation 89: 2308–2314. 10.1161/01.CIR.89.5.2308 CASPubMedWeb of Science®Google Scholar 89 Mundiña-Weilenmann C, Chang CF, Gutierrez LM, Hosey MM. (1991). Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. J Biol Chem 266: 4067–4073. CASPubMedWeb of Science®Google Scholar 90 Neher E. (1988). The influence of intracellular calcium concentration on degranulation of dialyzed mast cells from rat peritoneum. J Physiol (Lond) 395: 193–214. 10.1113/jphysiol.1988.sp016914 CASPubMedWeb of Science®Google Scholar 91 Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. (1995). Relaxation of arterial smooth muscle by calcium sparks. Science 270: 633–637. 10.1126/science.270.5236.633 CASPubMedWeb of Science®Google Scholar 92 Nelson MT, Conway MA, Knot HJ, Brayden JE. (1997). Chloride channel blockers inhibit myogenic tone in rat cerebral arteries. J Physiol (Lond) 502(2): 259–264. 10.1111/j.1469-7793.1997.259bk.x CASPubMedWeb of Science®Google Scholar 93 Nelson MT, Patlak JB, Worley JF, Standen NB. (1990). Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol Cell Physiol 259: C3–C18. 10.1152/ajpcell.1990.259.1.C3 CASPubMedWeb of Science®Google Scholar 94 Nelson MT, Quayle JM. (1995). Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol Cell Physiol 268: C799–C822. 10.1152/ajpcell.1995.268.4.C799 CASPubMedWeb of Science®Google Scholar 95 Nelson MT, Standen NB, Brayden JE, Worley III JF. (1988). Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 336: 382–385. 10.1038/336382a0 CASPubMedWeb of Science®Google Scholar 96 O'Callahan CM, Ptasienski J, Hosey MM. (1988). Phosphorylation of the 165-kDa dihydropyridine/phenylalkylamine receptor from skeletal muscle by protein kinase C. J Biol Chem 263: 17342–17349. CASPubMedWeb of Science®Google Scholar 97 O'Rourke ST. (1996). Effects of potassium channel blockers on resting tone in isolated coronary arteries. J Cardiovasc Pharmacol 27: 636–642. 10.1097/00005344-199605000-00004 CASPubMedWeb of Science®Google Scholar 98 Obejero-Paz CA, Auslender M, Scarpa A. (1998). PKC activity modulates availability and long openings of L-type Ca2+ channels in A7r5 cells. Am J Physiol Cell Physiol 275(2 Pt 1): C535–C543. 10.1152/ajpcell.1998.275.2.C535 CASPubMedWeb of Science®Google Scholar 99 Ohya Y, Abe I, Fujii K, Takata Y, Fujishima M. (1993). Voltage-dependent Ca2+ channels in resistance arteries from spontaneously hypertensive rats. Circ Res 73: 1090–1099. 10.1161/01.RES.73.6.1090 CASPubMedWeb of Science®Google Scholar 100 Pauwels PJ, Van Assouw HP, Leysen JE. (1987). Depolarization of chick myotubes triggers the appearance of (+)-[3H]PN 200–110-binding sites. Mol Pharm 32(6): 785–791. CASPubMedWeb of Science®Google Scholar 101 Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT. (1998). Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol Cell Physiol 274(5 Pt 1): C1346–C1355. 10.1152/ajpcell.1998.274.5.C1346 CASPubMedWeb of Science®Google Scholar 102 Post JM, Gelband CH, Hume JR. (1995). [Ca2+]i inhibition of K+ channels in canine pulmonary artery: Novel mechanism for hypoxia-induced membrane depolarization. Circ Res 77: 131–139. 10.1161/01.RES.77.1.131 CASPubMedWeb of Science®Google Scholar 103 Pragnell M, Dewaard M, Mori Y, Tanabe T, Snutch TP, Campbell KP. (1994). Calcium channel beta subunit binds to a conserved motif in the i-II cytoplasmic linker of the alpha(1)-subunit. Nature 368: 67–70. 10.1038/368067a0 CASPubMedWeb of Science®Google Scholar 104 Puri TS, Gerhardstein BL, Zhao XL, Ladner MB, Hosey MM. (1997). Differential effects of subunit interactions on protein kinase A-and C-mediated phosphorylation of L-type calcium channels. Biochemistry 36(31): 9605–9615. 10.1021/bi970500d CASPubMedWeb of Science®Google Scholar 105 Quayle JM, Dart C, Standen NB. (1996). The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol (Lond) 494: 715–726. 10.1113/jphysiol.1996.sp021527 CASPubMedWeb of Science®Google Scholar 106 Quayle JM, Nelson MT, Standen NB. (1997). ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. [Review] [641 refs]. Physiol Rev 77(4): 1165–1232. CASPubMedWeb of Science®Google Scholar 107 Rasmussen H, Barrett P, Zawalich W, Isales C, Stein P, Smallwood J, McCarthy R, Bollag W. (1989). Cycling of Ca2+ across the plasma membrane as a mechanism for generating a Ca2+ signal for cell activation. Ann N Y Acad Sci 568: 73–80. 10.1111/j.1749-6632.1989.tb12492.x CASPubMedWeb of Science®Google Scholar 108 Regensteiner JG, Steiner JF, Hiatt WR. (1996). Exercise training improves functional status in patients with peripheral arterial disease. Journal of Vascular Surgery 23(1): 104–115. 10.1016/S0741-5214(05)80040-0 PubMedWeb of Science®Google Scholar 109 Rembold CM. (1989). Desensitization of swine arterial smooth muscle to transplasmalemmal Ca2+ influx. J Physiol (Lond) 416: 273–290. 10.1113/jphysiol.1989.sp017760 CASPubMedWeb of Science®Google Scholar 110 Rembold CM, Murphy RA. (1988). Myoplasmic [Ca2+] determines myosin phosphorylation and isometric stress in agonist-stimulated swine arterial smooth muscle. J Cardiovasc Pharmacol 12 Suppl. 5: S38–S42. 10.1097/00005344-198806125-00007 CASPubMedGoogle Scholar 111 Robertson BE, Schubert R, Hescheler J, Nelson MT. (1993). cGMP-dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 265: C299–C303. 10.1152/ajpcell.1993.265.1.C299 CASPubMedWeb of Science®Google Scholar 112 Rowell LB. (1986). Human Circulation: Regulation During Physical Stress. New York: Oxford University Press. Google Scholar 113 Rubin LJ, Jones AW, Laughlin MH. (1994). Enhanced adenosine stimulation of cyclic AMP in coronary smooth muscle cells of exercise-trained miniature swine. Circulation 90:(4) 1–104 (Abstract). PubMedWeb of Science®Google Scholar 114 Ruiz-Velasco V, Zhong J, Hume JR, Keef KD. (1998). Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein. Circ Res (82): 557–565. 10.1161/01.RES.82.5.557 CASPubMedWeb of Science®Google Scholar 115 Schmid A, Renaud J, Lazdunski M. (1985). Short term and long term effects of β-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J Biol Chem 260: 13041–13046. CASPubMedWeb of Science®Google Scholar 116 Scornik FS, Codina J, Birnbaumer L, Toro L. (1993). Modulation of coronary smooth muscle KCa channels by Gsα independent of phosphorylation by protein kinase A. Am J Physiol Heart Circ Physiol 265: H1460–H1465. CASPubMedWeb of Science®Google Scholar 117 Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. (1994). Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74: 349–353. 10.1161/01.RES.74.2.349 CASPubMedWeb of Science®Google Scholar 118 Song YM, Simard JM. (1995). β-Adrenoceptor stimulation activates large-conductance Ca2+-activated K+ channels in smooth muscle cells from basilar artery of guinea pig. Pflugers Arch 430: 984–993. 10.1007/BF01837413 CASPubMedWeb of Science®Google Scholar 119 Stehno-Bittel L, Laughlin MH, Sturek M. (1990). Exercise training alters Ca release from coronary smooth muscle sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 259: H643–H647. CASPubMedWeb of Science®Google Scholar 120 Stehno-Bittel L, Laughlin MH, Sturek M. (1991). Exercise training depletes sarcoplasmic reticulum calcium in coronary smooth muscle. J Appl Physiol 71: 1764–1773. CASPubMedWeb of Science®Google Scholar 121 Stehno-Bittel L, Sturek M. (1992). Spontaneous sarcoplasmic reticulum calcium release and extrusion from bovine, not porcine, coronary artery smooth muscle. J Physiol (Lond) 451: 49–78. 10.1113/jphysiol.1992.sp019153 CASPubMedWeb of Science®Google Scholar 122 Stone HL. (1983). Control of the coronary circulation during exercise. Ann Rev Physiol 45: 213–227. 10.1146/annurev.ph.45.030183.001241 CASPubMedWeb of Science®Google Scholar 123 Sturek M, Hermsmeyer K. (1986). Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 233: 475–478. 10.1126/science.2425434 CASPubMedWeb of Science®Google Scholar 124 Takimoto K, Li D, Nerbonne JM, Levitan ES. (1997). Distribution, splicing and glucocorticoid-induced expression of cardiac alpha 1C and alpha 1D voltage-gated Ca2+ channel mRNAs. J Molecular Cell Cardiol 29(11): 3035–3042. 10.1006/jmcc.1997.0532 CASPubMedWeb of Science®Google Scholar 125 Toro L, Wallner M, Meera P, Tanaka Y. (1998). Maxi-KCa, a unique member of the voltage-gated K channel superfamily. News Physiol Sci 13: 112–117. CASPubMedWeb of Science®Google Scholar 126 Van Breemen C, Chen Q, Laher I. (1995). Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol Sci 16: 98–105. 10.1016/S0165-6147(00)88990-7 PubMedWeb of Science®Google Scholar 127 Wallner M, Meera P, Toro L. (1996). Determinant for β-subunit regulation in high-conductance voltage-activated and Ca2+-sensitive K+ channels: An additional transmembrane region at the N terminus. Proc Natl Acad Sci USA 93: 14922–14927. 10.1073/pnas.93.25.14922 CASPubMedWeb of Science®Google Scholar 128 Wang J, Wolin MS, Hintze TH. (1993). Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 73: 829–838. 10.1161/01.RES.73.5.829 CASPubMedWeb of Science®Google Scholar 129 Wang R, Karpinski E, Pang PKT. (1989). Two types of calcium channels in isolated smooth muscle cells from rat tail artery. Am J Physiol Heart Circ Physiol 256: H1361–H1368. CASPubMedWeb of Science®Google Scholar 130 Wayman GA, Impey S, Wu Z, Kindsvogel W, Prichard L, Storm DR. (1994). Synergistic activation of the type I adenylyl cyclase by Ca2+ and Gs-coupled receptors in vivo. J Biol Chem 269: 25400–25405. CASPubMedWeb of Science®Google Scholar 131 Welling A, Ludwig A, Zimmer S, Klugbauer N, Flockerzi V, Hofmann F. (1997). Alternatively spliced IS6 segments of the alpha 1C gene determine the tissue-specific dihydropyridine sensitivity of cardiac and vascular smooth muscle L-type Ca2+ channels. Circ Res 81(4): 526–532. 10.1161/01.RES.81.4.526 CASPubMedWeb of Science®Google Scholar 132 Wellman GC, Bonev AD, Nelson MT, Brayden JE. (1996). Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca2+-dependent K+ channels. Circ Res 79: 1024–1030. 10.1161/01.RES.79.5.1024 CASPubMedWeb of Science®Google Scholar 133 Wellner M-C, Isenberg G. (1994). Stretch effects on whole-cell currents of guinea-pig urinary bladder myocytes. J Physiol (Lond) 480: 439–448. 10.1113/jphysiol.1994.sp020373 CASPubMedWeb of Science®Google Scholar 134 Wesselman JPM, Vanbavel E, Pfaffendorf M, Spaan JAE. (1996). Voltage-operated calcium channels are essential for the myogenic responsiveness of cannulated rat mesenteric small arteries. J Vasc Res 33: 32–41. 10.1159/000159129 CASPubMedWeb of Science®Google Scholar 135 Wilde DW, Bohr DF. (1998). Dietary fat increases calcium current density in vascular cells but lowers blood pressure in hypertensive (SHRSP) and control rats (WKY). FASEB J 12:(4) A41 (Abstract). Web of Science®Google Scholar 136 Woodman CR, Muller JM, Laughlin MH, Price EM. (1997). Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol Heart Circ Physiol 273(6 Pt 2): H2575–H2579. CASPubMedWeb of Science®Google Scholar 137 Yatani A, Seidel CL, Allen J, Brown AM. (1987). Whole-cell and single-channel calcium currents of isolated smooth muscle cells from saphenous vein. Circ Res 60: 523–533. 10.1161/01.RES.60.4.523 CASPubMedWeb of Science®Google Scholar Citing Literature Volume7, Issue1February 2000Pages 25-40 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX