Robotic minimally invasive mitral valve reconstruction yields less blood product transfusion and shorter length of stay
2006; Elsevier BV; Volume: 140; Issue: 2 Linguagem: Inglês
10.1016/j.surg.2006.05.003
ISSN1532-7361
Autores Tópico(s)Aortic Disease and Treatment Approaches
ResumoBackground Robotic-assisted minimally invasive mitral valve reconstruction has gained popularity recently. Initial reports suggest that this approach can be used with relative safety and efficacy. Direct comparisons with a traditional sternotomy approach have not yet been explored extensively. Methods All mitral valve procedures that were performed by a single surgeon during a 3-year period of time were analyzed (n = 142 procedures). Patients whose condition required concomitant coronary artery bypass grafting or aortic valve surgery were excluded subsequently from analysis, because all of these patients were approached obligatorily by sternotomy (n = 71 patients). Six patients underwent right thoracotomy mitral valve procedures without robotic assistance, and 1 patient in cardiogenic shock underwent emergent mitral valve reconstruction by sternotomy. Of the remaining 64 patients who were eligible theoretically for sternotomy or robotic-assisted minimally invasive surgery, 39 patients underwent sternotomy, and 25 patients underwent right chest minimally invasive robotic-assisted surgery. Randomization between these 2 approaches would be almost impossible in the United States. The primary determinant for the choice of approach was request of the referring physician or patient. Multiple perioperative outcomes were then compared. Results Patients who underwent sternotomy and robotic-assisted surgery exhibited equivalent preoperative characteristics and experienced an equivalent degree of correction of mitral regurgitation in repairs and in need for replacement. Complex mitral valve repairs that entailed leaflet resection and reapproximation, annular plication, sliding annuloplasty, chordal transfer, and GoreTex neochordal construction were accomplished successfully with the robotic system. Cross-clamp and bypass times were longer for patients in the minimally invasive group (110 vs 151 minutes; P = .0015; 162 vs 239 minutes; P < .001, respectively). Mean packed red blood cell transfusion was lower among patients who underwent robotic-assisted surgery (5.0 vs 2.8 units; P = .04). Patients who underwent robotic-assisted surgeries experienced shorter mean duration of postoperative hospitalization (10.6 vs 7.1 days; P = .04). There was 1 death among the patients who underwent sternotomy, and no deaths among the patients who underwent robotic-assisted surgery. Conclusion Patients can undergo mitral valve reconstruction with minimally invasive robotic assistance, avoid a sternotomy, require less blood product transfusion, and experience shorter hospitalization. Robotic-assisted minimally invasive mitral valve reconstruction has gained popularity recently. Initial reports suggest that this approach can be used with relative safety and efficacy. Direct comparisons with a traditional sternotomy approach have not yet been explored extensively. All mitral valve procedures that were performed by a single surgeon during a 3-year period of time were analyzed (n = 142 procedures). Patients whose condition required concomitant coronary artery bypass grafting or aortic valve surgery were excluded subsequently from analysis, because all of these patients were approached obligatorily by sternotomy (n = 71 patients). Six patients underwent right thoracotomy mitral valve procedures without robotic assistance, and 1 patient in cardiogenic shock underwent emergent mitral valve reconstruction by sternotomy. Of the remaining 64 patients who were eligible theoretically for sternotomy or robotic-assisted minimally invasive surgery, 39 patients underwent sternotomy, and 25 patients underwent right chest minimally invasive robotic-assisted surgery. Randomization between these 2 approaches would be almost impossible in the United States. The primary determinant for the choice of approach was request of the referring physician or patient. Multiple perioperative outcomes were then compared. Patients who underwent sternotomy and robotic-assisted surgery exhibited equivalent preoperative characteristics and experienced an equivalent degree of correction of mitral regurgitation in repairs and in need for replacement. Complex mitral valve repairs that entailed leaflet resection and reapproximation, annular plication, sliding annuloplasty, chordal transfer, and GoreTex neochordal construction were accomplished successfully with the robotic system. Cross-clamp and bypass times were longer for patients in the minimally invasive group (110 vs 151 minutes; P = .0015; 162 vs 239 minutes; P < .001, respectively). Mean packed red blood cell transfusion was lower among patients who underwent robotic-assisted surgery (5.0 vs 2.8 units; P = .04). Patients who underwent robotic-assisted surgeries experienced shorter mean duration of postoperative hospitalization (10.6 vs 7.1 days; P = .04). There was 1 death among the patients who underwent sternotomy, and no deaths among the patients who underwent robotic-assisted surgery. Patients can undergo mitral valve reconstruction with minimally invasive robotic assistance, avoid a sternotomy, require less blood product transfusion, and experience shorter hospitalization.
Referência(s)