Artigo Revisado por pares

A boundary‐layer theory for elastic plates

1961; Wiley; Volume: 14; Issue: 1 Linguagem: Inglês

10.1002/cpa.3160140102

ISSN

1097-0312

Autores

Kurt Friedrichs, R. F. Dressler,

Tópico(s)

Differential Equations and Numerical Methods

Resumo

Communications on Pure and Applied MathematicsVolume 14, Issue 1 p. 1-33 Article A boundary-layer theory for elastic plates K. O. Friedrichs, K. O. Friedrichs Institute of Mathematical SciencesSearch for more papers by this authorR. F. Dressler, R. F. Dressler Research Division, Philco CorporationSearch for more papers by this author K. O. Friedrichs, K. O. Friedrichs Institute of Mathematical SciencesSearch for more papers by this authorR. F. Dressler, R. F. Dressler Research Division, Philco CorporationSearch for more papers by this author First published: February 1961 https://doi.org/10.1002/cpa.3160140102Citations: 175AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Friedrichs, K. O., and Dressler, R. F., A boundary-layer theory for elastic bending of plates, Abstract, Proc. 8th Interntl. Cong. on Mech., Istanbul, 1952. Google Scholar 2 Friedrichs, K. O., The edge effect in the bending of plates, H. Reissner Anniv. Vol., Contr. Appl. Mech., J. W. Edwards, Ann Arbor, Mich., 1949. Google Scholar 3 Fredrichs, K. O., Kirchhoff's boundary conditions and the edge effect for elastic plates, Proc. Symp. Appl. Math., Vol. 3, Elasticity, Amer. Math. Soc., McGraw-Hill, New York, 1950. Google Scholar 4 Kirchhoff, G., Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Vol. 40, 1850. Google Scholar 5 Lord Kelvin, and Tait, P. G., Elements of Natural Philosophy, 1st Edit., 1867. Google Scholar 6 Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, 4th Edit., Cambridge Univ. Press, 1927. Google Scholar 7 Reissner, E., The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech., Vol. 12, 1945, pp. A-69–A-77. Google Scholar 8 Bolle, L., Contributions au problème linéaire de flexion d'une plaque élastique, Bull. Tech. Suisse Romande, Vol. 73, 1947, pp. 281–285, pp. 293–298. Google Scholar 9 Reissner, H., Spannungen in Kugelschalen, Mueller-Breslau, Leipzig, 1912. Google Scholar 10 Timoshenko, S., Theory of Plates and Shells, McGraw-Hill, New York and London, 1940. Google Scholar 11 Dressler, R. F., Investigations of the properties of corrugated diaphragms, Part II., Trans. A. S. M. E., Jan. 1957, pp. 72–79. Google Scholar 12 Dressler, R. F., Bending and stretching of corrugated diaphragms, Trans. A. S. M. E., Ser. D, Dec. 1959, pp. 651–659. Google Scholar 13 Friedrichs, K. O., and Stoker, J. J., The non-linear boundary value problem of the buckled plate, Amer. J. Math., Vol. 63, 1941, pp. 839–888. 10.2307/2371625 Google Scholar 14 Keller, H. B., and Reiss, E. L., Non-linear bending and buckling of circular plates, Proc. 3rd Nat. Cong. Appl. Mech., Providence, R. I., June, 1958. Google Scholar 15 Friedrichs, K. O., Asymptotic phenomena in mathematical physics, Bull. Amer. Math. Soc., Vol. 61, 1955, pp. 485–504. 10.1090/S0002-9904-1955-09976-2 Google Scholar 16 Michell, J. H., On the direct determination of stress in an elastic solid, with application to the theory of plates, Proc. London Math. Soc., Vol. 31, 1899, pp. 100–124. 10.1112/plms/s1-31.1.100 Google Scholar 17 Reiss, E. L., Symmetric bending of thick circular plates, to appear. Google Scholar 18 Reiss, E. L., and Locke, S., On the theory of plane stress, to appear. Google Scholar Citing Literature Volume14, Issue1February 1961Pages 1-33 ReferencesRelatedInformation

Referência(s)